pcsxr/libpcsxcore/ix86_64/ix86_sse.c

1461 lines
60 KiB
C

// stop compiling if NORECBUILD build (only for Visual Studio)
#ifdef __x86_64__
#if !(defined(_MSC_VER) && defined(PCSX2_NORECBUILD))
#include <assert.h>
#include "ix86-64.h"
PCSX2_ALIGNED16(static unsigned int p[4]);
PCSX2_ALIGNED16(static unsigned int p2[4]);
PCSX2_ALIGNED16(static float f[4]);
XMMSSEType g_xmmtypes[XMMREGS] = {0};
/********************/
/* SSE instructions */
/********************/
#define SSEMtoRv( nc, code, overb ) \
assert( cpucaps.hasStreamingSIMDExtensions ); \
assert( to < XMMREGS ) ; \
MEMADDR_OP(0, nc, code, true, to, from, overb)
#define SSEMtoR( code, overb ) SSEMtoRv(2, code, overb)
#define SSERtoMv( nc, code, overb ) \
assert( cpucaps.hasStreamingSIMDExtensions ); \
assert( from < XMMREGS) ; \
MEMADDR_OP(0, nc, code, true, from, to, overb)
#define SSERtoM( code, overb ) SSERtoMv( 2, code, overb ) \
#define SSE_SS_MtoR( code, overb ) \
SSEMtoRv(3, (code << 8) | 0xF3, overb)
#define SSE_SS_RtoM( code, overb ) \
SSERtoMv(3, (code << 8) | 0xF3, overb)
#define SSERtoR( code ) \
assert( cpucaps.hasStreamingSIMDExtensions ); \
assert( to < XMMREGS && from < XMMREGS) ; \
RexRB(0, to, from); \
write16( code ); \
ModRM( 3, to, from );
#define SSEMtoR66( code ) \
SSEMtoRv( 3, (code << 8) | 0x66, 0 )
#define SSERtoM66( code ) \
SSERtoMv( 3, (code << 8) | 0x66, 0 )
#define SSERtoR66( code ) \
write8( 0x66 ); \
SSERtoR( code );
#define _SSERtoR66( code ) \
assert( cpucaps.hasStreamingSIMDExtensions ); \
assert( to < XMMREGS && from < XMMREGS) ; \
write8( 0x66 ); \
RexRB(0, from, to); \
write16( code ); \
ModRM( 3, from, to );
#define SSE_SS_RtoR( code ) \
assert( cpucaps.hasStreamingSIMDExtensions ); \
assert( to < XMMREGS && from < XMMREGS) ; \
write8( 0xf3 ); \
RexRB(0, to, from); \
write16( code ); \
ModRM( 3, to, from );
#define CMPPSMtoR( op ) \
SSEMtoR( 0xc20f, 1 ); \
write8( op );
#define CMPPSRtoR( op ) \
SSERtoR( 0xc20f ); \
write8( op );
#define CMPSSMtoR( op ) \
SSE_SS_MtoR( 0xc20f, 1 ); \
write8( op );
#define CMPSSRtoR( op ) \
SSE_SS_RtoR( 0xc20f ); \
write8( op );
void WriteRmOffset(x86IntRegType to, int offset);
void WriteRmOffsetFrom(x86IntRegType to, x86IntRegType from, int offset);
/* movups [r32][r32*scale] to xmm1 */
void SSE_MOVUPSRmStoR( x86SSERegType to, x86IntRegType from, x86IntRegType from2, int scale )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRXB(0, to, from2, from);
write16( 0x100f );
ModRM( 0, to, 0x4 );
SibSB( scale, from2, from );
}
/* movups xmm1 to [r32][r32*scale] */
void SSE_MOVUPSRtoRmS( x86SSERegType to, x86IntRegType from, x86IntRegType from2, int scale )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRXB(1, to, from2, from);
write16( 0x110f );
ModRM( 0, to, 0x4 );
SibSB( scale, from2, from );
}
/* movups [r32] to r32 */
void SSE_MOVUPSRmtoR( x86IntRegType to, x86IntRegType from )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, to, from);
write16( 0x100f );
ModRM( 0, to, from );
}
/* movups r32 to [r32] */
void SSE_MOVUPSRtoRm( x86IntRegType to, x86IntRegType from )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, from, to);
write16( 0x110f );
ModRM( 0, from, to );
}
/* movlps [r32] to r32 */
void SSE_MOVLPSRmtoR( x86SSERegType to, x86IntRegType from )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(1, to, from);
write16( 0x120f );
ModRM( 0, to, from );
}
void SSE_MOVLPSRmtoROffset( x86SSERegType to, x86IntRegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, to, from);
write16( 0x120f );
WriteRmOffsetFrom(to, from, offset);
}
/* movaps r32 to [r32] */
void SSE_MOVLPSRtoRm( x86IntRegType to, x86IntRegType from )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, from, to);
write16( 0x130f );
ModRM( 0, from, to );
}
void SSE_MOVLPSRtoRmOffset( x86SSERegType to, x86IntRegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, from, to);
write16( 0x130f );
WriteRmOffsetFrom(from, to, offset);
}
/* movaps [r32][r32*scale] to xmm1 */
void SSE_MOVAPSRmStoR( x86SSERegType to, x86IntRegType from, x86IntRegType from2, int scale )
{
assert( cpucaps.hasStreamingSIMDExtensions && from != EBP );
RexRXB(0, to, from2, from);
write16( 0x280f );
ModRM( 0, to, 0x4 );
SibSB( scale, from2, from );
}
/* movaps xmm1 to [r32][r32*scale] */
void SSE_MOVAPSRtoRmS( x86SSERegType to, x86IntRegType from, x86IntRegType from2, int scale )
{
assert( cpucaps.hasStreamingSIMDExtensions && from != EBP );
RexRXB(0, to, from2, from);
write16( 0x290f );
ModRM( 0, to, 0x4 );
SibSB( scale, from2, from );
}
// movaps [r32+offset] to r32
void SSE_MOVAPSRmtoROffset( x86SSERegType to, x86IntRegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, to, from);
write16( 0x280f );
WriteRmOffsetFrom(to, from, offset);
}
// movaps r32 to [r32+offset]
void SSE_MOVAPSRtoRmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, from, to);
write16( 0x290f );
WriteRmOffsetFrom(from, to, offset);
}
// movdqa [r32+offset] to r32
void SSE2_MOVDQARmtoROffset( x86SSERegType to, x86IntRegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
write8(0x66);
RexRB(0, to, from);
write16( 0x6f0f );
WriteRmOffsetFrom(to, from, offset);
}
// movdqa r32 to [r32+offset]
void SSE2_MOVDQARtoRmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
write8(0x66);
RexRB(0, from, to);
write16( 0x7f0f );
WriteRmOffsetFrom(from, to, offset);
}
// movups [r32+offset] to r32
void SSE_MOVUPSRmtoROffset( x86SSERegType to, x86IntRegType from, int offset )
{
RexRB(0, to, from);
write16( 0x100f );
WriteRmOffsetFrom(to, from, offset);
}
// movups r32 to [r32+offset]
void SSE_MOVUPSRtoRmOffset( x86SSERegType to, x86IntRegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, from, to);
write16( 0x110f );
WriteRmOffsetFrom(from, to, offset);
}
//**********************************************************************************/
//MOVAPS: Move aligned Packed Single Precision FP values *
//**********************************************************************************
void SSE_MOVAPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x280f, 0 ); }
void SSE_MOVAPS_XMM_to_M128( uptr to, x86SSERegType from ) { SSERtoM( 0x290f, 0 ); }
void SSE_MOVAPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x280f ); }
void SSE_MOVUPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x100f, 0 ); }
void SSE_MOVUPS_XMM_to_M128( uptr to, x86SSERegType from ) { SSERtoM( 0x110f, 0 ); }
void SSE2_MOVSD_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) SSE2EMU_MOVSD_XMM_to_XMM(to, from);
else {
write8(0xf2);
SSERtoR( 0x100f);
}
}
void SSE2_MOVQ_M64_to_XMM( x86SSERegType to, uptr from )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) SSE2EMU_MOVQ_M64_to_XMM(to, from);
else {
SSE_SS_MtoR( 0x7e0f, 0);
}
}
void SSE2_MOVQ_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) SSE2EMU_MOVQ_XMM_to_XMM(to, from);
else {
SSE_SS_RtoR( 0x7e0f);
}
}
void SSE2_MOVQ_XMM_to_M64( u32 to, x86SSERegType from )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) SSE_MOVLPS_XMM_to_M64(to, from);
else {
SSERtoM66(0xd60f);
}
}
#ifndef __x86_64__
void SSE2_MOVDQ2Q_XMM_to_MM( x86MMXRegType to, x86SSERegType from)
{
if( !cpucaps.hasStreamingSIMD2Extensions ) SSE2EMU_MOVDQ2Q_XMM_to_MM(to, from);
else {
write8(0xf2);
SSERtoR( 0xd60f);
}
}
void SSE2_MOVQ2DQ_MM_to_XMM( x86SSERegType to, x86MMXRegType from)
{
if( !cpucaps.hasStreamingSIMD2Extensions ) SSE2EMU_MOVQ2DQ_MM_to_XMM(to, from);
else {
SSE_SS_RtoR( 0xd60f);
}
}
#endif
//**********************************************************************************/
//MOVSS: Move Scalar Single-Precision FP value *
//**********************************************************************************
void SSE_MOVSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x100f, 0 ); }
void SSE_MOVSS_XMM_to_M32( u32 to, x86SSERegType from ) { SSE_SS_RtoM( 0x110f, 0 ); }
void SSE_MOVSS_XMM_to_Rm( x86IntRegType to, x86SSERegType from )
{
write8(0xf3);
RexRB(0, from, to);
write16(0x110f);
ModRM(0, from, to);
}
void SSE_MOVSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR( 0x100f ); }
void SSE_MOVSS_RmOffset_to_XMM( x86SSERegType to, x86IntRegType from, int offset )
{
write8(0xf3);
RexRB(0, to, from);
write16( 0x100f );
WriteRmOffsetFrom(to, from, offset);
}
void SSE_MOVSS_XMM_to_RmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
write8(0xf3);
RexRB(0, from, to);
write16(0x110f);
WriteRmOffsetFrom(from, to, offset);
}
void SSE_MASKMOVDQU_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xf70f ); }
//**********************************************************************************/
//MOVLPS: Move low Packed Single-Precision FP *
//**********************************************************************************
void SSE_MOVLPS_M64_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x120f, 0 ); }
void SSE_MOVLPS_XMM_to_M64( u32 to, x86SSERegType from ) { SSERtoM( 0x130f, 0 ); }
void SSE_MOVLPS_RmOffset_to_XMM( x86SSERegType to, x86IntRegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, to, from);
write16( 0x120f );
WriteRmOffsetFrom(to, from, offset);
}
void SSE_MOVLPS_XMM_to_RmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
RexRB(0, from, to);
write16(0x130f);
WriteRmOffsetFrom(from, to, offset);
}
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MOVHPS: Move High Packed Single-Precision FP *
//**********************************************************************************
void SSE_MOVHPS_M64_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x160f, 0 ); }
void SSE_MOVHPS_XMM_to_M64( u32 to, x86SSERegType from ) { SSERtoM( 0x170f, 0 ); }
void SSE_MOVHPS_RmOffset_to_XMM( x86SSERegType to, x86IntRegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, to, from);
write16( 0x160f );
WriteRmOffsetFrom(to, from, offset);
}
void SSE_MOVHPS_XMM_to_RmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
assert( cpucaps.hasStreamingSIMDExtensions );
RexRB(0, from, to);
write16(0x170f);
WriteRmOffsetFrom(from, to, offset);
}
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MOVLHPS: Moved packed Single-Precision FP low to high *
//**********************************************************************************
void SSE_MOVLHPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x160f ); }
//////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MOVHLPS: Moved packed Single-Precision FP High to Low *
//**********************************************************************************
void SSE_MOVHLPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x120f ); }
///////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//ANDPS: Logical Bit-wise AND for Single FP *
//**********************************************************************************
void SSE_ANDPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x540f, 0 ); }
void SSE_ANDPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x540f ); }
///////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//ANDNPS : Logical Bit-wise AND NOT of Single-precision FP values *
//**********************************************************************************
void SSE_ANDNPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x550f, 0 ); }
void SSE_ANDNPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR( 0x550f ); }
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//RCPPS : Packed Single-Precision FP Reciprocal *
//**********************************************************************************
void SSE_RCPPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x530f ); }
void SSE_RCPPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x530f, 0 ); }
void SSE_RCPSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR(0x530f); }
void SSE_RCPSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR(0x530f, 0); }
//////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//ORPS : Bit-wise Logical OR of Single-Precision FP Data *
//**********************************************************************************
void SSE_ORPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x560f, 0 ); }
void SSE_ORPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x560f ); }
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//XORPS : Bitwise Logical XOR of Single-Precision FP Values *
//**********************************************************************************
void SSE_XORPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x570f, 0 ); }
void SSE_XORPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x570f ); }
///////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//ADDPS : ADD Packed Single-Precision FP Values *
//**********************************************************************************
void SSE_ADDPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x580f, 0 ); }
void SSE_ADDPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x580f ); }
////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//ADDSS : ADD Scalar Single-Precision FP Values *
//**********************************************************************************
void SSE_ADDSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x580f, 0 ); }
void SSE_ADDSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR( 0x580f ); }
/////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//SUBPS: Packed Single-Precision FP Subtract *
//**********************************************************************************
void SSE_SUBPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x5c0f, 0 ); }
void SSE_SUBPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x5c0f ); }
///////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//SUBSS : Scalar Single-Precision FP Subtract *
//**********************************************************************************
void SSE_SUBSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x5c0f, 0 ); }
void SSE_SUBSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR( 0x5c0f ); }
/////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MULPS : Packed Single-Precision FP Multiply *
//**********************************************************************************
void SSE_MULPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x590f, 0 ); }
void SSE_MULPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x590f ); }
////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MULSS : Scalar Single-Precision FP Multiply *
//**********************************************************************************
void SSE_MULSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x590f, 0 ); }
void SSE_MULSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR( 0x590f ); }
////////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//Packed Single-Precission FP compare (CMPccPS) *
//**********************************************************************************
//missing SSE_CMPPS_I8_to_XMM
// SSE_CMPPS_M32_to_XMM
// SSE_CMPPS_XMM_to_XMM
void SSE_CMPEQPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 0 ); }
void SSE_CMPEQPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 0 ); }
void SSE_CMPLTPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 1 ); }
void SSE_CMPLTPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 1 ); }
void SSE_CMPLEPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 2 ); }
void SSE_CMPLEPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 2 ); }
void SSE_CMPUNORDPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 3 ); }
void SSE_CMPUNORDPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 3 ); }
void SSE_CMPNEPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 4 ); }
void SSE_CMPNEPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 4 ); }
void SSE_CMPNLTPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 5 ); }
void SSE_CMPNLTPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 5 ); }
void SSE_CMPNLEPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 6 ); }
void SSE_CMPNLEPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 6 ); }
void SSE_CMPORDPS_M128_to_XMM( x86SSERegType to, uptr from ) { CMPPSMtoR( 7 ); }
void SSE_CMPORDPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPPSRtoR( 7 ); }
///////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//Scalar Single-Precission FP compare (CMPccSS) *
//**********************************************************************************
//missing SSE_CMPSS_I8_to_XMM
// SSE_CMPSS_M32_to_XMM
// SSE_CMPSS_XMM_to_XMM
void SSE_CMPEQSS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 0 ); }
void SSE_CMPEQSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 0 ); }
void SSE_CMPLTSS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 1 ); }
void SSE_CMPLTSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 1 ); }
void SSE_CMPLESS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 2 ); }
void SSE_CMPLESS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 2 ); }
void SSE_CMPUNORDSS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 3 ); }
void SSE_CMPUNORDSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 3 ); }
void SSE_CMPNESS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 4 ); }
void SSE_CMPNESS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 4 ); }
void SSE_CMPNLTSS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 5 ); }
void SSE_CMPNLTSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 5 ); }
void SSE_CMPNLESS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 6 ); }
void SSE_CMPNLESS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 6 ); }
void SSE_CMPORDSS_M32_to_XMM( x86SSERegType to, uptr from ) { CMPSSMtoR( 7 ); }
void SSE_CMPORDSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { CMPSSRtoR( 7 ); }
void SSE_UCOMISS_M32_to_XMM( x86SSERegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x0F, 0x2E), true, to, from, 0);
}
void SSE_UCOMISS_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
RexRB(0, to, from);
write16( 0x2e0f );
ModRM( 3, to, from );
}
//////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//RSQRTPS : Packed Single-Precision FP Square Root Reciprocal *
//**********************************************************************************
void SSE_RSQRTPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x520f, 0 ); }
void SSE_RSQRTPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR( 0x520f ); }
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//RSQRTSS : Scalar Single-Precision FP Square Root Reciprocal *
//**********************************************************************************
void SSE_RSQRTSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x520f, 0 ); }
void SSE_RSQRTSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSE_SS_RtoR( 0x520f ); }
////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//SQRTPS : Packed Single-Precision FP Square Root *
//**********************************************************************************
void SSE_SQRTPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x510f, 0 ); }
void SSE_SQRTPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR( 0x510f ); }
//////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//SQRTSS : Scalar Single-Precision FP Square Root *
//**********************************************************************************
void SSE_SQRTSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x510f, 0 ); }
void SSE_SQRTSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSE_SS_RtoR( 0x510f ); }
////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MAXPS: Return Packed Single-Precision FP Maximum *
//**********************************************************************************
void SSE_MAXPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x5f0f, 0 ); }
void SSE_MAXPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x5f0f ); }
/////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MAXSS: Return Scalar Single-Precision FP Maximum *
//**********************************************************************************
void SSE_MAXSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x5f0f, 0 ); }
void SSE_MAXSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR( 0x5f0f ); }
#ifndef __x86_64__
/////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//CVTPI2PS: Packed Signed INT32 to Packed Single FP Conversion *
//**********************************************************************************
void SSE_CVTPI2PS_M64_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x2a0f, 0 ); }
void SSE_CVTPI2PS_MM_to_XMM( x86SSERegType to, x86MMXRegType from ) { SSERtoR( 0x2a0f ); }
///////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//CVTPS2PI: Packed Single FP to Packed Signed INT32 Conversion *
//**********************************************************************************
void SSE_CVTPS2PI_M64_to_MM( x86MMXRegType to, uptr from ) { SSEMtoR( 0x2d0f, 0 ); }
void SSE_CVTPS2PI_XMM_to_MM( x86MMXRegType to, x86SSERegType from ) { SSERtoR( 0x2d0f ); }
#endif
void SSE_CVTTSS2SI_M32_to_R32(x86IntRegType to, uptr from) { SSE_SS_MtoR(0x2c0f, 0); }
void SSE_CVTTSS2SI_XMM_to_R32(x86IntRegType to, x86SSERegType from)
{
write8(0xf3);
RexRB(0, to, from);
write16(0x2c0f);
ModRM(3, to, from);
}
void SSE_CVTSI2SS_M32_to_XMM(x86SSERegType to, uptr from) { SSE_SS_MtoR(0x2a0f, 0); }
void SSE_CVTSI2SS_R_to_XMM(x86SSERegType to, x86IntRegType from)
{
write8(0xf3);
RexRB(0, to, from);
write16(0x2a0f);
ModRM(3, to, from);
}
///////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//CVTDQ2PS: Packed Signed INT32 to Packed Single Precision FP Conversion *
//**********************************************************************************
void SSE2_CVTDQ2PS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x5b0f, 0 ); }
void SSE2_CVTDQ2PS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x5b0f ); }
//**********************************************************************************/
//CVTPS2DQ: Packed Single Precision FP to Packed Signed INT32 Conversion *
//**********************************************************************************
void SSE2_CVTPS2DQ_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0x5b0f ); }
void SSE2_CVTPS2DQ_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0x5b0f ); }
void SSE2_CVTTPS2DQ_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR(0x5b0f); }
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MINPS: Return Packed Single-Precision FP Minimum *
//**********************************************************************************
void SSE_MINPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x5d0f, 0 ); }
void SSE_MINPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x5d0f ); }
//////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MINSS: Return Scalar Single-Precision FP Minimum *
//**********************************************************************************
void SSE_MINSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x5d0f, 0 ); }
void SSE_MINSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR( 0x5d0f ); }
#ifndef __x86_64__
///////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PMAXSW: Packed Signed Integer Word Maximum *
//**********************************************************************************
//missing
// SSE_PMAXSW_M64_to_MM
// SSE2_PMAXSW_M128_to_XMM
// SSE2_PMAXSW_XMM_to_XMM
void SSE_PMAXSW_MM_to_MM( x86MMXRegType to, x86MMXRegType from ){ SSERtoR( 0xEE0F ); }
///////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PMINSW: Packed Signed Integer Word Minimum *
//**********************************************************************************
//missing
// SSE_PMINSW_M64_to_MM
// SSE2_PMINSW_M128_to_XMM
// SSE2_PMINSW_XMM_to_XMM
void SSE_PMINSW_MM_to_MM( x86MMXRegType to, x86MMXRegType from ){ SSERtoR( 0xEA0F ); }
#endif
//////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//SHUFPS: Shuffle Packed Single-Precision FP Values *
//**********************************************************************************
void SSE_SHUFPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from, u8 imm8 ) { SSERtoR( 0xC60F ); write8( imm8 ); }
void SSE_SHUFPS_M128_to_XMM( x86SSERegType to, uptr from, u8 imm8 ) { SSEMtoR( 0xC60F, 1 ); write8( imm8 ); }
void SSE_SHUFPS_RmOffset_to_XMM( x86SSERegType to, x86IntRegType from, int offset, u8 imm8 )
{
RexRB(0, to, from);
write16(0xc60f);
WriteRmOffsetFrom(to, from, offset);
write8(imm8);
}
////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PSHUFD: Shuffle Packed DoubleWords *
//**********************************************************************************
void SSE2_PSHUFD_XMM_to_XMM( x86SSERegType to, x86SSERegType from, u8 imm8 )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) {
SSE2EMU_PSHUFD_XMM_to_XMM(to, from, imm8);
}
else {
SSERtoR66( 0x700F );
write8( imm8 );
}
}
void SSE2_PSHUFD_M128_to_XMM( x86SSERegType to, uptr from, u8 imm8 ) { SSEMtoRv( 3, 0x700F66, 1 ); write8( imm8 ); }
void SSE2_PSHUFLW_XMM_to_XMM( x86SSERegType to, x86SSERegType from, u8 imm8 ) { write8(0xF2); SSERtoR(0x700F); write8(imm8); }
void SSE2_PSHUFLW_M128_to_XMM( x86SSERegType to, uptr from, u8 imm8 ) { SSEMtoRv(3, 0x700FF2, 1); write8(imm8); }
void SSE2_PSHUFHW_XMM_to_XMM( x86SSERegType to, x86SSERegType from, u8 imm8 ) { SSE_SS_RtoR(0x700F); write8(imm8); }
void SSE2_PSHUFHW_M128_to_XMM( x86SSERegType to, uptr from, u8 imm8 ) { SSE_SS_MtoR(0x700F, 1); write8(imm8); }
///////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//UNPCKLPS: Unpack and Interleave low Packed Single-Precision FP Data *
//**********************************************************************************
void SSE_UNPCKLPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR(0x140f, 0); }
void SSE_UNPCKLPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x140F ); }
////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//UNPCKHPS: Unpack and Interleave High Packed Single-Precision FP Data *
//**********************************************************************************
void SSE_UNPCKHPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR(0x150f, 0); }
void SSE_UNPCKHPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x150F ); }
////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//DIVPS : Packed Single-Precision FP Divide *
//**********************************************************************************
void SSE_DIVPS_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR( 0x5e0F, 0 ); }
void SSE_DIVPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR( 0x5e0F ); }
//////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//DIVSS : Scalar Single-Precision FP Divide *
//**********************************************************************************
void SSE_DIVSS_M32_to_XMM( x86SSERegType to, uptr from ) { SSE_SS_MtoR( 0x5e0F, 0 ); }
void SSE_DIVSS_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSE_SS_RtoR( 0x5e0F ); }
/////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//STMXCSR : Store Streaming SIMD Extension Control/Status *
//**********************************************************************************
void SSE_STMXCSR( uptr from ) {
MEMADDR_OP(0, VAROP2(0x0F, 0xAE), false, 3, from, 0);
}
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//LDMXCSR : Load Streaming SIMD Extension Control/Status *
//**********************************************************************************
void SSE_LDMXCSR( uptr from ) {
MEMADDR_OP(0, VAROP2(0x0F, 0xAE), false, 2, from, 0);
}
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PADDB,PADDW,PADDD : Add Packed Integers *
//**********************************************************************************
void SSE2_PADDB_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xFC0F ); }
void SSE2_PADDB_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0xFC0F ); }
void SSE2_PADDW_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xFD0F ); }
void SSE2_PADDW_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0xFD0F ); }
void SSE2_PADDD_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xFE0F ); }
void SSE2_PADDD_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0xFE0F ); }
void SSE2_PADDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xD40F ); }
void SSE2_PADDQ_M128_to_XMM(x86SSERegType to, uptr from ) { SSEMtoR66( 0xD40F ); }
///////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PCMPxx: Compare Packed Integers *
//**********************************************************************************
void SSE2_PCMPGTB_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0x640F ); }
void SSE2_PCMPGTB_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0x640F ); }
void SSE2_PCMPGTW_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0x650F ); }
void SSE2_PCMPGTW_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0x650F ); }
void SSE2_PCMPGTD_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0x660F ); }
void SSE2_PCMPGTD_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0x660F ); }
void SSE2_PCMPEQB_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0x740F ); }
void SSE2_PCMPEQB_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0x740F ); }
void SSE2_PCMPEQW_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0x750F ); }
void SSE2_PCMPEQW_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0x750F ); }
void SSE2_PCMPEQD_XMM_to_XMM(x86SSERegType to, x86SSERegType from )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) {
SSE_CMPEQPS_XMM_to_XMM(to, from);
}
else {
SSERtoR66( 0x760F );
}
}
void SSE2_PCMPEQD_M128_to_XMM(x86SSERegType to, uptr from )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) {
SSE_CMPEQPS_M128_to_XMM(to, from);
}
else {
SSEMtoR66( 0x760F );
}
}
////////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PEXTRW,PINSRW: Packed Extract/Insert Word *
//**********************************************************************************
void SSE_PEXTRW_XMM_to_R32(x86IntRegType to, x86SSERegType from, u8 imm8 ){ SSERtoR66(0xC50F); write8( imm8 ); }
void SSE_PINSRW_R32_to_XMM(x86SSERegType to, x86IntRegType from, u8 imm8 ){ SSERtoR66(0xC40F); write8( imm8 ); }
////////////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PSUBx: Subtract Packed Integers *
//**********************************************************************************
void SSE2_PSUBB_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xF80F ); }
void SSE2_PSUBB_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0xF80F ); }
void SSE2_PSUBW_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xF90F ); }
void SSE2_PSUBW_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0xF90F ); }
void SSE2_PSUBD_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xFA0F ); }
void SSE2_PSUBD_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0xFA0F ); }
void SSE2_PSUBQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xFB0F ); }
void SSE2_PSUBQ_M128_to_XMM(x86SSERegType to, uptr from ){ SSEMtoR66( 0xFB0F ); }
///////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//MOVD: Move Dword(32bit) to /from XMM reg *
//**********************************************************************************
void SSE2_MOVD_M32_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66(0x6E0F); }
void SSE2_MOVD_R_to_XMM( x86SSERegType to, x86IntRegType from )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) {
SSE2EMU_MOVD_R_to_XMM(to, from);
}
else {
SSERtoR66(0x6E0F);
}
}
void SSE2_MOVD_Rm_to_XMM( x86SSERegType to, x86IntRegType from )
{
write8(0x66);
RexRB(0, to, from);
write16( 0x6e0f );
ModRM( 0, to, from);
}
void SSE2_MOVD_RmOffset_to_XMM( x86SSERegType to, x86IntRegType from, int offset )
{
write8(0x66);
RexRB(0, to, from);
write16( 0x6e0f );
WriteRmOffsetFrom(to, from, offset);
}
void SSE2_MOVD_XMM_to_M32( u32 to, x86SSERegType from ) { SSERtoM66(0x7E0F); }
void SSE2_MOVD_XMM_to_R( x86IntRegType to, x86SSERegType from ) {
if( !cpucaps.hasStreamingSIMD2Extensions ) {
SSE2EMU_MOVD_XMM_to_R(to, from);
}
else {
_SSERtoR66(0x7E0F);
}
}
void SSE2_MOVD_XMM_to_Rm( x86IntRegType to, x86SSERegType from )
{
write8(0x66);
RexRB(0, from, to);
write16( 0x7e0f );
ModRM( 0, from, to );
}
void SSE2_MOVD_XMM_to_RmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
if( !cpucaps.hasStreamingSIMD2Extensions ) {
SSE2EMU_MOVD_XMM_to_RmOffset(to, from, offset);
}
else {
write8(0x66);
RexRB(0, from, to);
write16( 0x7e0f );
WriteRmOffsetFrom(from, to, offset);
}
}
#ifdef __x86_64__
void SSE2_MOVQ_XMM_to_R( x86IntRegType to, x86SSERegType from )
{
assert( from < XMMREGS);
write8( 0x66 );
RexRB(1, from, to);
write16( 0x7e0f );
ModRM( 3, from, to );
}
void SSE2_MOVQ_R_to_XMM( x86SSERegType to, x86IntRegType from )
{
assert( to < XMMREGS);
write8(0x66);
RexRB(1, to, from);
write16( 0x6e0f );
ModRM( 3, to, from );
}
#endif
////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//POR : SSE Bitwise OR *
//**********************************************************************************
void SSE2_POR_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xEB0F ); }
void SSE2_POR_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0xEB0F ); }
// logical and to &= from
void SSE2_PAND_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xDB0F ); }
void SSE2_PAND_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0xDB0F ); }
// to = (~to) & from
void SSE2_PANDN_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xDF0F ); }
void SSE2_PANDN_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0xDF0F ); }
/////////////////////////////////////////////////////////////////////////////////////
//**********************************************************************************/
//PXOR : SSE Bitwise XOR *
//**********************************************************************************
void SSE2_PXOR_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xEF0F ); }
void SSE2_PXOR_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xEF0F ); }
///////////////////////////////////////////////////////////////////////////////////////
void SSE2_MOVDQA_M128_to_XMM(x86SSERegType to, uptr from) {SSEMtoR66(0x6F0F); }
void SSE2_MOVDQA_XMM_to_M128( uptr to, x86SSERegType from ){SSERtoM66(0x7F0F);}
void SSE2_MOVDQA_XMM_to_XMM( x86SSERegType to, x86SSERegType from) { SSERtoR66(0x6F0F); }
void SSE2_MOVDQU_M128_to_XMM(x86SSERegType to, uptr from) { SSE_SS_MtoR(0x6F0F, 0); }
void SSE2_MOVDQU_XMM_to_M128( uptr to, x86SSERegType from) { SSE_SS_RtoM(0x7F0F, 0); }
void SSE2_MOVDQU_XMM_to_XMM( x86SSERegType to, x86SSERegType from) { SSE_SS_RtoR(0x6F0F); }
// shift right logical
void SSE2_PSRLW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xD10F); }
void SSE2_PSRLW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xD10F); }
void SSE2_PSRLW_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x710F );
ModRM( 3, 2 , to );
write8( imm8 );
}
void SSE2_PSRLD_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xD20F); }
void SSE2_PSRLD_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xD20F); }
void SSE2_PSRLD_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x720F );
ModRM( 3, 2 , to );
write8( imm8 );
}
void SSE2_PSRLQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xD30F); }
void SSE2_PSRLQ_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xD30F); }
void SSE2_PSRLQ_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x730F );
ModRM( 3, 2 , to );
write8( imm8 );
}
void SSE2_PSRLDQ_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x730F );
ModRM( 3, 3 , to );
write8( imm8 );
}
// shift right arithmetic
void SSE2_PSRAW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xE10F); }
void SSE2_PSRAW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xE10F); }
void SSE2_PSRAW_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x710F );
ModRM( 3, 4 , to );
write8( imm8 );
}
void SSE2_PSRAD_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xE20F); }
void SSE2_PSRAD_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xE20F); }
void SSE2_PSRAD_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x720F );
ModRM( 3, 4 , to );
write8( imm8 );
}
// shift left logical
void SSE2_PSLLW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xF10F); }
void SSE2_PSLLW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xF10F); }
void SSE2_PSLLW_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x710F );
ModRM( 3, 6 , to );
write8( imm8 );
}
void SSE2_PSLLD_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xF20F); }
void SSE2_PSLLD_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xF20F); }
void SSE2_PSLLD_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x720F );
ModRM( 3, 6 , to );
write8( imm8 );
}
void SSE2_PSLLQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66(0xF30F); }
void SSE2_PSLLQ_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66(0xF30F); }
void SSE2_PSLLQ_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x730F );
ModRM( 3, 6 , to );
write8( imm8 );
}
void SSE2_PSLLDQ_I8_to_XMM(x86SSERegType to, u8 imm8)
{
write8( 0x66 );
RexB(0, to);
write16( 0x730F );
ModRM( 3, 7 , to );
write8( imm8 );
}
void SSE2_PMAXSW_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xEE0F ); }
void SSE2_PMAXSW_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xEE0F ); }
void SSE2_PMAXUB_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xDE0F ); }
void SSE2_PMAXUB_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xDE0F ); }
void SSE2_PMINSW_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xEA0F ); }
void SSE2_PMINSW_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xEA0F ); }
void SSE2_PMINUB_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xDA0F ); }
void SSE2_PMINUB_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xDA0F ); }
//
void SSE2_PADDSB_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xEC0F ); }
void SSE2_PADDSB_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xEC0F ); }
void SSE2_PADDSW_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xED0F ); }
void SSE2_PADDSW_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xED0F ); }
void SSE2_PSUBSB_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xE80F ); }
void SSE2_PSUBSB_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xE80F ); }
void SSE2_PSUBSW_XMM_to_XMM( x86SSERegType to, x86SSERegType from ){ SSERtoR66( 0xE90F ); }
void SSE2_PSUBSW_M128_to_XMM( x86SSERegType to, uptr from ){ SSEMtoR66( 0xE90F ); }
void SSE2_PSUBUSB_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xD80F ); }
void SSE2_PSUBUSB_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0xD80F ); }
void SSE2_PSUBUSW_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xD90F ); }
void SSE2_PSUBUSW_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0xD90F ); }
void SSE2_PADDUSB_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xDC0F ); }
void SSE2_PADDUSB_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0xDC0F ); }
void SSE2_PADDUSW_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) { SSERtoR66( 0xDD0F ); }
void SSE2_PADDUSW_M128_to_XMM( x86SSERegType to, uptr from ) { SSEMtoR66( 0xDD0F ); }
//**********************************************************************************/
//PACKSSWB,PACKSSDW: Pack Saturate Signed Word
//**********************************************************************************
void SSE2_PACKSSWB_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x630F ); }
void SSE2_PACKSSWB_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x630F ); }
void SSE2_PACKSSDW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x6B0F ); }
void SSE2_PACKSSDW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x6B0F ); }
void SSE2_PACKUSWB_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x670F ); }
void SSE2_PACKUSWB_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x670F ); }
//**********************************************************************************/
//PUNPCKHWD: Unpack 16bit high
//**********************************************************************************
void SSE2_PUNPCKLBW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x600F ); }
void SSE2_PUNPCKLBW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x600F ); }
void SSE2_PUNPCKHBW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x680F ); }
void SSE2_PUNPCKHBW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x680F ); }
void SSE2_PUNPCKLWD_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x610F ); }
void SSE2_PUNPCKLWD_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x610F ); }
void SSE2_PUNPCKHWD_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x690F ); }
void SSE2_PUNPCKHWD_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x690F ); }
void SSE2_PUNPCKLDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x620F ); }
void SSE2_PUNPCKLDQ_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x620F ); }
void SSE2_PUNPCKHDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x6A0F ); }
void SSE2_PUNPCKHDQ_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x6A0F ); }
void SSE2_PUNPCKLQDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x6C0F ); }
void SSE2_PUNPCKLQDQ_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x6C0F ); }
void SSE2_PUNPCKHQDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0x6D0F ); }
void SSE2_PUNPCKHQDQ_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0x6D0F ); }
void SSE2_PMULLW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0xD50F ); }
void SSE2_PMULLW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0xD50F ); }
void SSE2_PMULHW_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0xE50F ); }
void SSE2_PMULHW_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0xE50F ); }
void SSE2_PMULUDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSERtoR66( 0xF40F ); }
void SSE2_PMULUDQ_M128_to_XMM(x86SSERegType to, uptr from) { SSEMtoR66( 0xF40F ); }
void SSE2_PMOVMSKB_XMM_to_R32(x86IntRegType to, x86SSERegType from) { SSERtoR66(0xD70F); }
void SSE_MOVMSKPS_XMM_to_R32(x86IntRegType to, x86SSERegType from) { SSERtoR(0x500F); }
void SSE2_MOVMSKPD_XMM_to_R32(x86IntRegType to, x86SSERegType from) { SSERtoR66(0x500F); }
void SSE3_HADDPS_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { write8(0xf2); SSERtoR( 0x7c0f ); }
void SSE3_HADDPS_M128_to_XMM(x86SSERegType to, uptr from){ SSEMtoRv( 3, 0x7c0fF2, 0 ); }
void SSE3_MOVSLDUP_XMM_to_XMM(x86SSERegType to, x86SSERegType from) {
write8(0xf3);
RexRB(0, to, from);
write16( 0x120f);
ModRM( 3, to, from );
}
void SSE3_MOVSLDUP_M128_to_XMM(x86SSERegType to, uptr from) { SSE_SS_MtoR(0x120f, 0); }
void SSE3_MOVSHDUP_XMM_to_XMM(x86SSERegType to, x86SSERegType from) { SSE_SS_RtoR(0x160f); }
void SSE3_MOVSHDUP_M128_to_XMM(x86SSERegType to, uptr from) { SSE_SS_MtoR(0x160f, 0); }
// SSE-X
void SSEX_MOVDQA_M128_to_XMM( x86SSERegType to, uptr from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_MOVDQA_M128_to_XMM(to, from);
else SSE_MOVAPS_M128_to_XMM(to, from);
}
void SSEX_MOVDQA_XMM_to_M128( uptr to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVDQA_XMM_to_M128(to, from);
else SSE_MOVAPS_XMM_to_M128(to, from);
}
void SSEX_MOVDQA_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVDQA_XMM_to_XMM(to, from);
else SSE_MOVAPS_XMM_to_XMM(to, from);
}
void SSEX_MOVDQARmtoROffset( x86SSERegType to, x86IntRegType from, int offset )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_MOVDQARmtoROffset(to, from, offset);
else SSE_MOVAPSRmtoROffset(to, from, offset);
}
void SSEX_MOVDQARtoRmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVDQARtoRmOffset(to, from, offset);
else SSE_MOVAPSRtoRmOffset(to, from, offset);
}
void SSEX_MOVDQU_M128_to_XMM( x86SSERegType to, uptr from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_MOVDQU_M128_to_XMM(to, from);
else SSE_MOVAPS_M128_to_XMM(to, from);
}
void SSEX_MOVDQU_XMM_to_M128( uptr to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVDQU_XMM_to_M128(to, from);
else SSE_MOVAPS_XMM_to_M128(to, from);
}
void SSEX_MOVDQU_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVDQU_XMM_to_XMM(to, from);
else SSE_MOVAPS_XMM_to_XMM(to, from);
}
void SSEX_MOVD_M32_to_XMM( x86SSERegType to, uptr from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_MOVD_M32_to_XMM(to, from);
else SSE_MOVSS_M32_to_XMM(to, from);
}
void SSEX_MOVD_XMM_to_M32( u32 to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVD_XMM_to_M32(to, from);
else SSE_MOVSS_XMM_to_M32(to, from);
}
void SSEX_MOVD_XMM_to_Rm( x86IntRegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVD_XMM_to_Rm(to, from);
else SSE_MOVSS_XMM_to_Rm(to, from);
}
void SSEX_MOVD_RmOffset_to_XMM( x86SSERegType to, x86IntRegType from, int offset )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_MOVD_RmOffset_to_XMM(to, from, offset);
else SSE_MOVSS_RmOffset_to_XMM(to, from, offset);
}
void SSEX_MOVD_XMM_to_RmOffset( x86IntRegType to, x86SSERegType from, int offset )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_MOVD_XMM_to_RmOffset(to, from, offset);
else SSE_MOVSS_XMM_to_RmOffset(to, from, offset);
}
void SSEX_POR_M128_to_XMM( x86SSERegType to, uptr from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_POR_M128_to_XMM(to, from);
else SSE_ORPS_M128_to_XMM(to, from);
}
void SSEX_POR_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_POR_XMM_to_XMM(to, from);
else SSE_ORPS_XMM_to_XMM(to, from);
}
void SSEX_PXOR_M128_to_XMM( x86SSERegType to, uptr from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_PXOR_M128_to_XMM(to, from);
else SSE_XORPS_M128_to_XMM(to, from);
}
void SSEX_PXOR_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_PXOR_XMM_to_XMM(to, from);
else SSE_XORPS_XMM_to_XMM(to, from);
}
void SSEX_PAND_M128_to_XMM( x86SSERegType to, uptr from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_PAND_M128_to_XMM(to, from);
else SSE_ANDPS_M128_to_XMM(to, from);
}
void SSEX_PAND_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_PAND_XMM_to_XMM(to, from);
else SSE_ANDPS_XMM_to_XMM(to, from);
}
void SSEX_PANDN_M128_to_XMM( x86SSERegType to, uptr from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_PANDN_M128_to_XMM(to, from);
else SSE_ANDNPS_M128_to_XMM(to, from);
}
void SSEX_PANDN_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_PANDN_XMM_to_XMM(to, from);
else SSE_ANDNPS_XMM_to_XMM(to, from);
}
void SSEX_PUNPCKLDQ_M128_to_XMM(x86SSERegType to, uptr from)
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_PUNPCKLDQ_M128_to_XMM(to, from);
else SSE_UNPCKLPS_M128_to_XMM(to, from);
}
void SSEX_PUNPCKLDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from)
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_PUNPCKLDQ_XMM_to_XMM(to, from);
else SSE_UNPCKLPS_XMM_to_XMM(to, from);
}
void SSEX_PUNPCKHDQ_M128_to_XMM(x86SSERegType to, uptr from)
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[to] == XMMT_INT ) SSE2_PUNPCKHDQ_M128_to_XMM(to, from);
else SSE_UNPCKHPS_M128_to_XMM(to, from);
}
void SSEX_PUNPCKHDQ_XMM_to_XMM(x86SSERegType to, x86SSERegType from)
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) SSE2_PUNPCKHDQ_XMM_to_XMM(to, from);
else SSE_UNPCKHPS_XMM_to_XMM(to, from);
}
void SSEX_MOVHLPS_XMM_to_XMM( x86SSERegType to, x86SSERegType from )
{
if( cpucaps.hasStreamingSIMD2Extensions && g_xmmtypes[from] == XMMT_INT ) {
SSE2_PUNPCKHQDQ_XMM_to_XMM(to, from);
if( to != from ) SSE2_PSHUFD_XMM_to_XMM(to, to, 0x4e);
}
else {
SSE_MOVHLPS_XMM_to_XMM(to, from);
}
}
// SSE2 emulation
void SSE2EMU_MOVSD_XMM_to_XMM( x86SSERegType to, x86SSERegType from)
{
SSE_SHUFPS_XMM_to_XMM(to, from, 0x4e);
SSE_SHUFPS_XMM_to_XMM(to, to, 0x4e);
}
void SSE2EMU_MOVQ_M64_to_XMM( x86SSERegType to, uptr from)
{
SSE_XORPS_XMM_to_XMM(to, to);
SSE_MOVLPS_M64_to_XMM(to, from);
}
void SSE2EMU_MOVQ_XMM_to_XMM( x86SSERegType to, x86SSERegType from)
{
SSE_XORPS_XMM_to_XMM(to, to);
SSE2EMU_MOVSD_XMM_to_XMM(to, from);
}
void SSE2EMU_MOVD_RmOffset_to_XMM( x86SSERegType to, x86IntRegType from, int offset )
{
MOV32RmtoROffset(EAX, from, offset);
MOV32ItoM((uptr)p+4, 0);
MOV32ItoM((uptr)p+8, 0);
MOV32RtoM((uptr)p, EAX);
MOV32ItoM((uptr)p+12, 0);
SSE_MOVAPS_M128_to_XMM(to, (uptr)p);
}
void SSE2EMU_MOVD_XMM_to_RmOffset(x86IntRegType to, x86SSERegType from, int offset )
{
SSE_MOVSS_XMM_to_M32((uptr)p, from);
MOV32MtoR(EAX, (uptr)p);
MOV32RtoRmOffset(to, EAX, offset);
}
#ifndef __x86_64__
extern void SetMMXstate();
void SSE2EMU_MOVDQ2Q_XMM_to_MM( x86MMXRegType to, x86SSERegType from)
{
SSE_MOVLPS_XMM_to_M64(p, from);
MOVQMtoR(to, p);
SetMMXstate();
}
void SSE2EMU_MOVQ2DQ_MM_to_XMM( x86SSERegType to, x86MMXRegType from)
{
MOVQRtoM(p, from);
SSE_MOVLPS_M64_to_XMM(to, p);
SetMMXstate();
}
#endif
/****************************************************************************/
/* SSE2 Emulated functions for SSE CPU's by kekko */
/****************************************************************************/
void SSE2EMU_PSHUFD_XMM_to_XMM( x86SSERegType to, x86SSERegType from, u8 imm8 ) {
MOV64ItoR(EAX, (uptr)&p);
MOV64ItoR(EBX, (uptr)&p2);
SSE_MOVUPSRtoRm(EAX, from);
MOV32ItoR(ECX, (u32)imm8);
AND32ItoR(ECX, 3);
SHL32ItoR(ECX, 2);
ADD32RtoR(ECX, EAX);
MOV32RmtoR(ECX, ECX);
MOV32RtoRm(EBX, ECX);
ADD32ItoR(EBX, 4);
MOV32ItoR(ECX, (u32)imm8);
SHR32ItoR(ECX, 2);
AND32ItoR(ECX, 3);
SHL32ItoR(ECX, 2);
ADD32RtoR(ECX, EAX);
MOV32RmtoR(ECX, ECX);
MOV32RtoRm(EBX, ECX);
ADD32ItoR(EBX, 4);
MOV32ItoR(ECX, (u32)imm8);
SHR32ItoR(ECX, 4);
AND32ItoR(ECX, 3);
SHL32ItoR(ECX, 2);
ADD32RtoR(ECX, EAX);
MOV32RmtoR(ECX, ECX);
MOV32RtoRm(EBX, ECX);
ADD32ItoR(EBX, 4);
MOV32ItoR(ECX, (u32)imm8);
SHR32ItoR(ECX, 6);
AND32ItoR(ECX, 3);
SHL32ItoR(ECX, 2);
ADD32RtoR(ECX, EAX);
MOV32RmtoR(ECX, ECX);
MOV32RtoRm(EBX, ECX);
SUB32ItoR(EBX, 12);
SSE_MOVUPSRmtoR(to, EBX);
}
void SSE2EMU_MOVD_XMM_to_R( x86IntRegType to, x86SSERegType from ) {
/* XXX? */
MOV64ItoR(to, (uptr)&p);
SSE_MOVUPSRtoRm(to, from);
MOV32RmtoR(to, to);
}
#ifndef __x86_64__
extern void SetFPUstate();
extern void _freeMMXreg(int mmxreg);
#endif
void SSE2EMU_CVTPS2DQ_XMM_to_XMM( x86SSERegType to, x86SSERegType from ) {
#ifndef __x86_64__
SetFPUstate();
_freeMMXreg(7);
#endif
SSE_MOVAPS_XMM_to_M128((uptr)f, from);
FLD32((uptr)&f[0]);
FISTP32((uptr)&p2[0]);
FLD32((uptr)&f[1]);
FISTP32((uptr)&p2[1]);
FLD32((uptr)&f[2]);
FISTP32((uptr)&p2[2]);
FLD32((uptr)&f[3]);
FISTP32((uptr)&p2[3]);
SSE_MOVAPS_M128_to_XMM(to, (uptr)p2);
}
void SSE2EMU_CVTDQ2PS_M128_to_XMM( x86SSERegType to, uptr from ) {
#ifndef __x86_64__
SetFPUstate();
_freeMMXreg(7);
#endif
FILD32(from);
FSTP32((uptr)&f[0]);
FILD32(from+4);
FSTP32((uptr)&f[1]);
FILD32(from+8);
FSTP32((uptr)&f[2]);
FILD32(from+12);
FSTP32((uptr)&f[3]);
SSE_MOVAPS_M128_to_XMM(to, (uptr)f);
}
void SSE2EMU_MOVD_XMM_to_M32( uptr to, x86SSERegType from ) {
/* XXX? */
MOV64ItoR(EAX, (uptr)&p);
SSE_MOVUPSRtoRm(EAX, from);
MOV32RmtoR(EAX, EAX);
MOV32RtoM(to, EAX);
}
void SSE2EMU_MOVD_R_to_XMM( x86SSERegType to, x86IntRegType from ) {
MOV32ItoM((uptr)p+4, 0);
MOV32ItoM((uptr)p+8, 0);
MOV32RtoM((uptr)p, from);
MOV32ItoM((uptr)p+12, 0);
SSE_MOVAPS_M128_to_XMM(to, (uptr)p);
}
#endif
#endif