pcsxr/libpcsxcore/ix86_64/ix86-64.c

3144 lines
53 KiB
C

/*
* ix86 core v0.6.2
* Authors: linuzappz <linuzappz@pcsx.net>
* alexey silinov
* goldfinger
* zerofrog(@gmail.com)
*/
#ifdef __x86_64__
// stop compiling if NORECBUILD build (only for Visual Studio)
#if !(defined(_MSC_VER) && defined(PCSX2_NORECBUILD))
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "ix86-64.h"
#ifdef __x86_64__
#ifdef _MSC_VER
// visual studio calling convention
x86IntRegType g_x86savedregs[] = { RBX, RBP, RSI, RDI, R12, R13, R14, R15 };
x86IntRegType g_x86tempregs[] = { R8, R9, R10, R11, RDX, RCX };
// arranged in savedreg -> tempreg order
x86IntRegType g_x86allregs[14] = { RBX, RBP, RSI, RDI, R12, R13, R14, R15, R8, R9, R10, R11, RDX, RCX };
#else
// standard calling convention
// registers saved by called functions (no need to flush them across calls)
x86IntRegType g_x86savedregs[] = { RBX, RBP, R12, R13, R14, R15 };
// temp registers that need to be saved across calls
x86IntRegType g_x86tempregs[] = { RCX, RDX, R8, R9, R10, R11, RSI, RDI };
// arranged in savedreg -> tempreg order
x86IntRegType g_x86allregs[14] = { RBX, RBP, R12, R13, R14, R15, RCX, RDX, R8, R9, R10, R11, RSI, RDI };
#endif
x86IntRegType g_x868bitregs[11] = { RBX, R12, R13, R14, R15, RCX, RDX, R8, R9, R10, R11 };
x86IntRegType g_x86non8bitregs[3] = { RBP, RSI, RDI };
#endif // __x86_64__
s8 *x86Ptr;
u8 *j8Ptr[32];
u32 *j32Ptr[32];
void WriteRmOffset(x86IntRegType to, int offset)
{
if( (to&7) == ESP ) {
if( offset == 0 ) {
ModRM( 0, 0, 4 );
ModRM( 0, ESP, 4 );
}
else if( offset < 128 && offset >= -128 ) {
ModRM( 1, 0, 4 );
ModRM( 0, ESP, 4 );
write8(offset);
}
else {
ModRM( 2, 0, 4 );
ModRM( 0, ESP, 4 );
write32(offset);
}
}
else {
if( offset == 0 ) {
ModRM( 0, 0, to );
}
else if( offset < 128 && offset >= -128 ) {
ModRM( 1, 0, to );
write8(offset);
}
else {
ModRM( 2, 0, to );
write32(offset);
}
}
}
void WriteRmOffsetFrom(x86IntRegType to, x86IntRegType from, int offset)
{
if ((from&7) == ESP) {
if( offset == 0 ) {
ModRM( 0, to, 0x4 );
SibSB( 0, 0x4, 0x4 );
}
else if( offset < 128 && offset >= -128 ) {
ModRM( 1, to, 0x4 );
SibSB( 0, 0x4, 0x4 );
write8(offset);
}
else {
ModRM( 2, to, 0x4 );
SibSB( 0, 0x4, 0x4 );
write32(offset);
}
}
else {
if( offset == 0 ) {
ModRM( 0, to, from );
}
else if( offset < 128 && offset >= -128 ) {
ModRM( 1, to, from );
write8(offset);
}
else {
ModRM( 2, to, from );
write32(offset);
}
}
}
// This function is just for rec debugging purposes
void CheckX86Ptr( void )
{
}
void writeVAROP(unsigned opl, u64 op)
{
while (opl--)
{
write8(op & 0xFF);
op >>= 8;
}
}
#define writeVARROP(REX, opl, op) ({ \
if (opl > 1 && ((op & 0xFF) == 0x66 || (op & 0xFF) == 0xF3 || (op & 0xFF) == 0xF2)) { \
write8(op & 0xFF); \
opl --; \
op >>= 8; \
} \
REX; \
writeVAROP(opl, op); \
})
void MEMADDR_OP(bool w, unsigned opl, u64 op, bool isreg, int reg, uptr p, sptr off)
{
#ifdef __x86_64__
sptr pr = MEMADDR_(p, 5 + opl + (w || reg >= 8) + off);
if (SPTR32(pr))
{
writeVARROP(RexR(w, reg), opl, op);
ModRM(0, reg, DISP32);
write32(pr);
}
else if (UPTR32(p))
{
writeVARROP(RexR(w, reg), opl, op);
ModRM(0, reg, SIB);
SibSB(0, SIB, DISP32);
write32(p);
}
else
{
assert(!isreg || reg != X86_TEMP);
MOV64ItoR(X86_TEMP, p);
writeVARROP(RexRB(w, reg, X86_TEMP), opl, op);
ModRM(0, reg, X86_TEMP);
}
#else
writeVARROP(RexR(w, reg), opl, op);
ModRM(0, reg, DISP32);
write32(p);
#endif
}
void SET8R( int cc, int to )
{
RexB(0, to);
write8( 0x0F );
write8( cc );
write8( 0xC0 | ( to ) );
}
u8* J8Rel( int cc, int to )
{
write8( cc );
write8( to );
return x86Ptr - 1;
}
u16* J16Rel( int cc, u32 to )
{
write16( 0x0F66 );
write8( cc );
write16( to );
return (u16*)( x86Ptr - 2 );
}
u32* J32Rel( int cc, u32 to )
{
write8( 0x0F );
write8( cc );
write32( to );
return (u32*)( x86Ptr - 4 );
}
void CMOV32RtoR( int cc, int to, int from )
{
RexRB(0,to, from);
write8( 0x0F );
write8( cc );
ModRM( 3, to, from );
}
void CMOV32MtoR( int cc, x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x0F, cc), true, to, from, 0);
}
////////////////////////////////////////////////////
void x86SetPtr( char* ptr )
{
x86Ptr = ptr;
}
////////////////////////////////////////////////////
void x86Shutdown( void )
{
}
////////////////////////////////////////////////////
void x86SetJ8( u8* j8 )
{
u32 jump = ( x86Ptr - (s8*)j8 ) - 1;
if ( jump > 0x7f ) {
SysPrintf( "j8 greater than 0x7f!!\n" );
assert(0);
}
*j8 = (u8)jump;
}
void x86SetJ8A( u8* j8 )
{
u32 jump = ( x86Ptr - (s8*)j8 ) - 1;
if ( jump > 0x7f ) {
SysPrintf( "j8 greater than 0x7f!!\n" );
//assert(0);
}
if( ((uptr)x86Ptr&0xf) > 4 ) {
uptr newjump = jump + 16-((uptr)x86Ptr&0xf);
if( newjump <= 0x7f ) {
jump = newjump;
while((uptr)x86Ptr&0xf) *x86Ptr++ = 0x90;
}
}
*j8 = (u8)jump;
}
void x86SetJ16( u16 *j16 )
{
// doesn't work
u32 jump = ( x86Ptr - (s8*)j16 ) - 2;
if ( jump > 0x7fff ) {
SysPrintf( "j16 greater than 0x7fff!!\n" );
//assert(0);
}
*j16 = (u16)jump;
}
void x86SetJ16A( u16 *j16 )
{
if( ((uptr)x86Ptr&0xf) > 4 ) {
while((uptr)x86Ptr&0xf) *x86Ptr++ = 0x90;
}
x86SetJ16(j16);
}
////////////////////////////////////////////////////
void x86SetJ32( u32* j32 )
{
*j32 = ( x86Ptr - (s8*)j32 ) - 4;
}
void x86SetJ32A( u32* j32 )
{
while((uptr)x86Ptr&0xf) *x86Ptr++ = 0x90;
x86SetJ32(j32);
}
////////////////////////////////////////////////////
void x86Align( int bytes )
{
// fordward align
x86Ptr = (s8*)( ( (uptr)x86Ptr + bytes - 1) & ~( bytes - 1 ) );
}
/********************/
/* IX86 intructions */
/********************/
void STC( void )
{
write8( 0xF9 );
}
void CLC( void )
{
write8( 0xF8 );
}
////////////////////////////////////
// mov instructions /
////////////////////////////////////
/* mov r64 to r64 */
void MOV64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1, from, to);
write8( 0x89 );
ModRM( 3, from, to );
}
/* mov r64 to m64 */
void MOV64RtoM( uptr to, x86IntRegType from )
{
if (from == RAX)
{
RexR(1, 0);
write8(0xA3);
write64(to);
}
else
{
MEMADDR_OP(1, VAROP1(0x89), true, from, to, 0);
}
}
/* mov m64 to r64 */
void MOV64MtoR( x86IntRegType to, uptr from )
{
if (to == RAX)
{
RexR(1, 0);
write8(0xA1);
write64(from);
}
else
{
MEMADDR_OP(1, VAROP1(0x8B), true, to, from, 0);
}
}
/* mov imm32 to m64 */
void MOV64I32toM(uptr to, u32 from )
{
MEMADDR_OP(1, VAROP1(0xC7), false, 0, to, 4);
write32(from);
}
// mov imm64 to r64
void MOV64ItoR( x86IntRegType to, u64 from)
{
RexB(1, to);
write8( 0xB8 | (to & 0x7) );
write64( from );
}
/* mov imm32 to r64 */
void MOV64I32toR( x86IntRegType to, s32 from )
{
RexB(1, to);
write8( 0xC7 );
ModRM( 0, 0, to );
write32( from );
}
// mov imm64 to [r64+off]
void MOV64ItoRmOffset( x86IntRegType to, u32 from, int offset)
{
RexB(1,to);
write8( 0xC7 );
WriteRmOffset(to, offset);
write32(from);
}
// mov [r64+offset] to r64
void MOV64RmOffsettoR( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(1, to, from);
write8( 0x8B );
WriteRmOffsetFrom(to, from, offset);
}
/* mov [r64][r64*scale] to r64 */
void MOV64RmStoR( x86IntRegType to, x86IntRegType from, x86IntRegType from2, int scale) {
RexRXB(1, to, from2, from);
write8( 0x8B );
ModRM( 0, to, 0x4 );
SibSB(scale, from2, from );
}
/* mov r64 to [r64+offset] */
void MOV64RtoRmOffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(1,from,to);
write8( 0x89 );
WriteRmOffsetFrom(from, to, offset);
}
/* mov r64 to [r64][r64*scale] */
void MOV64RtoRmS( x86IntRegType to, x86IntRegType from, x86IntRegType from2, int scale) {
RexRXB(1, to, from2, from);
write8( 0x89 );
ModRM( 0, to, 0x4 );
SibSB(scale, from2, from );
}
/* mov r32 to r32 */
void MOV32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0, from, to);
write8( 0x89 );
ModRM( 3, from, to );
}
/* mov r32 to m32 */
void MOV32RtoM( uptr to, x86IntRegType from )
{
if (from == EAX)
{
write8(0xA3);
write64(to);
}
else
{
MEMADDR_OP(0, VAROP1(0x89), true, from, to, 0);
}
}
/* mov m32 to r32 */
void MOV32MtoR( x86IntRegType to, uptr from )
{
if (to == RAX)
{
write8(0xA1);
write64(from);
}
else
{
MEMADDR_OP(0, VAROP1(0x8B), true, to, from, 0);
}
}
/* mov [r32] to r32 */
void MOV32RmtoR( x86IntRegType to, x86IntRegType from ) {
RexRB(0, to, from);
write8(0x8B);
WriteRmOffsetFrom(to, from, 0);
}
void MOV32RmtoROffset( x86IntRegType to, x86IntRegType from, int offset ) {
RexRB(0, to, from);
write8( 0x8B );
WriteRmOffsetFrom(to, from, offset);
}
/* mov [r32+r32*scale] to r32 */
void MOV32RmStoR( x86IntRegType to, x86IntRegType from, x86IntRegType from2, int scale) {
RexRXB(0,to,from2,from);
write8( 0x8B );
ModRM( 0, to, 0x4 );
SibSB(scale, from2, from );
}
// mov r32 to [r32<<scale+from2]
void MOV32RmSOffsettoR( x86IntRegType to, x86IntRegType from1, int from2, int scale )
{
RexRXB(0,to,from1,0);
write8( 0x8B );
ModRM( 0, to, 0x4 );
ModRM( scale, from1, 5);
write32(from2);
}
/* mov r32 to [r32] */
void MOV32RtoRm( x86IntRegType to, x86IntRegType from ) {
RexRB(0, from, to);
if ((to&7) == ESP) {
write8( 0x89 );
ModRM( 0, from, 0x4 );
SibSB( 0, 0x4, 0x4 );
} else {
write8( 0x89 );
ModRM( 0, from, to );
}
}
/* mov r32 to [r32][r32*scale] */
void MOV32RtoRmS( x86IntRegType to, x86IntRegType from, x86IntRegType from2, int scale) {
RexRXB(0, to, from2, from);
write8( 0x89 );
ModRM( 0, to, 0x4 );
SibSB(scale, from2, from );
}
/* mov imm32 to r32 */
void MOV32ItoR( x86IntRegType to, u32 from )
{
RexB(0, to);
write8( 0xB8 | (to & 0x7) );
write32( from );
}
/* mov imm32 to m32 */
void MOV32ItoM(uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0xC7), false, 0, to, 4);
write32(from);
}
// mov imm32 to [r32+off]
void MOV32ItoRmOffset( x86IntRegType to, u32 from, int offset)
{
RexB(0,to);
write8( 0xC7 );
WriteRmOffset(to, offset);
write32(from);
}
// mov r32 to [r32+off]
void MOV32RtoRmOffset( x86IntRegType to, x86IntRegType from, int offset)
{
RexRB(0,from,to);
write8( 0x89 );
WriteRmOffsetFrom(from, to, offset);
}
/* mov r16 to m16 */
void MOV16RtoM(uptr to, x86IntRegType from )
{
if (from == EAX)
{
write8(0x66);
write8(0xA3);
write64(to);
}
else
{
MEMADDR_OP(0, VAROP2(0x66, 0x89), true, from, to, 0);
}
}
/* mov m16 to r16 */
void MOV16MtoR( x86IntRegType to, uptr from )
{
if (to == EAX)
{
write8(0x66);
write8(0xA1);
write64(from);
}
else
{
MEMADDR_OP(0, VAROP2(0x66, 0x8B), true, to, from, 0);
}
}
void MOV16RmtoR( x86IntRegType to, x86IntRegType from)
{
write8( 0x66 );
RexRB(0,to,from);
write8( 0x8B );
WriteRmOffsetFrom(to, from, 0);
}
void MOV16RmtoROffset( x86IntRegType to, x86IntRegType from, int offset )
{
write8( 0x66 );
RexRB(0,to,from);
write8( 0x8B );
WriteRmOffsetFrom(to, from, offset);
}
void MOV16RmSOffsettoR( x86IntRegType to, x86IntRegType from1, u32 from2, int scale )
{
write8(0x66);
RexRXB(0,to,from1,0);
write8( 0x8B );
ModRM( 0, to, 0x4 );
ModRM( scale, from1, 5);
write32(from2);
}
void MOV16RtoRm(x86IntRegType to, x86IntRegType from)
{
write8( 0x66 );
RexRB(0,from,to);
write8( 0x89 );
ModRM( 0, from, to );
}
/* mov imm16 to m16 */
void MOV16ItoM( uptr to, u16 from )
{
MEMADDR_OP(0, VAROP2(0x66, 0xC7), false, 0, to, 2);
write16( from );
}
/* mov r16 to [r32][r32*scale] */
void MOV16RtoRmS( x86IntRegType to, x86IntRegType from, x86IntRegType from2, int scale) {
write8( 0x66 );
RexRXB(0,to,from2,from);
write8( 0x89 );
ModRM( 0, to, 0x4 );
SibSB(scale, from2, from );
}
void MOV16ItoR( x86IntRegType to, u16 from )
{
RexB(0, to);
write16( 0xB866 | ((to & 0x7)<<8) );
write16( from );
}
// mov imm16 to [r16+off]
void MOV16ItoRmOffset( x86IntRegType to, u16 from, u32 offset)
{
write8(0x66);
RexB(0,to);
write8( 0xC7 );
WriteRmOffset(to, offset);
write16(from);
}
// mov r16 to [r16+off]
void MOV16RtoRmOffset( x86IntRegType to, x86IntRegType from, int offset)
{
write8(0x66);
RexRB(0,from,to);
write8( 0x89 );
WriteRmOffsetFrom(from, to, offset);
}
/* mov r8 to m8 */
void MOV8RtoM( uptr to, x86IntRegType from )
{
if (from == EAX)
{
write8(0xA2);
write64(to);
}
else
{
MEMADDR_OP(0, VAROP1(0x88), true, from, to, 0);
}
}
/* mov m8 to r8 */
void MOV8MtoR( x86IntRegType to, uptr from )
{
if (to == EAX)
{
write8(0xA0);
write64(from);
}
else
{
MEMADDR_OP(0, VAROP1(0x8A), true, to, from, 0);
}
}
/* mov [r32] to r8 */
void MOV8RmtoR(x86IntRegType to, x86IntRegType from)
{
RexRB(0,to,from);
write8( 0x8A );
WriteRmOffsetFrom(to, from, 0);
}
void MOV8RmtoROffset(x86IntRegType to, x86IntRegType from, int offset)
{
RexRB(0,to,from);
write8( 0x8A );
WriteRmOffsetFrom(to, from, offset);
}
void MOV8RtoRm(x86IntRegType to, x86IntRegType from)
{
RexRB(0,from,to);
write8( 0x88 );
WriteRmOffsetFrom(from, to, 0);
}
/* mov imm8 to m8 */
void MOV8ItoM( uptr to, u8 from )
{
MEMADDR_OP(0, VAROP1(0xC6), false, 0, to, 1);
write8( from );
}
// mov imm8 to r8
void MOV8ItoR( x86IntRegType to, u8 from )
{
RexB(0, to);
write8( 0xB0 | (to & 0x7) );
write8( from );
}
// mov imm8 to [r8+off]
void MOV8ItoRmOffset( x86IntRegType to, u8 from, int offset)
{
assert( to != ESP );
RexB(0,to);
write8( 0xC6 );
WriteRmOffset(to,offset);
write8(from);
}
// mov r8 to [r8+off]
void MOV8RtoRmOffset( x86IntRegType to, x86IntRegType from, int offset)
{
assert( to != ESP );
RexRB(0,from,to);
write8( 0x88 );
WriteRmOffsetFrom(from,to,offset);
}
/* movsx r8 to r32 */
void MOVSX32R8toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xBE0F );
ModRM( 3, to, from );
}
void MOVSX32Rm8toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xBE0F );
ModRM( 0, to, from );
}
void MOVSX32Rm8toROffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(0,to,from);
write16( 0xBE0F );
WriteRmOffsetFrom(to,from,offset);
}
/* movsx m8 to r32 */
void MOVSX32M8toR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x0F, 0xBE), true, to, from, 0);
}
/* movsx r16 to r32 */
void MOVSX32R16toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xBF0F );
ModRM( 3, to, from );
}
void MOVSX32Rm16toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xBF0F );
ModRM( 0, to, from );
}
void MOVSX32Rm16toROffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(0,to,from);
write16( 0xBF0F );
WriteRmOffsetFrom(to,from,offset);
}
/* movsx m16 to r32 */
void MOVSX32M16toR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x0F, 0xBF), true, to, from, 0);
}
/* movzx r8 to r32 */
void MOVZX32R8toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xB60F );
ModRM( 3, to, from );
}
void MOVZX32Rm8toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xB60F );
ModRM( 0, to, from );
}
void MOVZX32Rm8toROffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(0,to,from);
write16( 0xB60F );
WriteRmOffsetFrom(to,from,offset);
}
/* movzx m8 to r32 */
void MOVZX32M8toR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x0F, 0xB6), true, to, from, 0);
}
/* movzx r16 to r32 */
void MOVZX32R16toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xB70F );
ModRM( 3, to, from );
}
void MOVZX32Rm16toR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xB70F );
ModRM( 0, to, from );
}
void MOVZX32Rm16toROffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(0,to,from);
write16( 0xB70F );
WriteRmOffsetFrom(to,from,offset);
}
/* movzx m16 to r32 */
void MOVZX32M16toR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x0F, 0xB7), true, to, from, 0);
}
#ifdef __x86_64__
/* movzx r8 to r64 */
void MOVZX64R8toR( x86IntRegType to, x86IntRegType from )
{
RexRB(1,to,from);
write16( 0xB60F );
ModRM( 3, to, from );
}
void MOVZX64Rm8toR( x86IntRegType to, x86IntRegType from )
{
RexRB(1,to,from);
write16( 0xB60F );
ModRM( 0, to, from );
}
void MOVZX64Rm8toROffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(1,to,from);
write16( 0xB60F );
WriteRmOffsetFrom(to,from,offset);
}
/* movzx m8 to r64 */
void MOVZX64M8toR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP2(0x0F, 0xB6), true, to, from, 0);
}
/* movzx r16 to r64 */
void MOVZX64R16toR( x86IntRegType to, x86IntRegType from )
{
RexRB(1,to,from);
write16( 0xB70F );
ModRM( 3, to, from );
}
void MOVZX64Rm16toR( x86IntRegType to, x86IntRegType from )
{
RexRB(1,to,from);
write16( 0xB70F );
ModRM( 0, to, from );
}
void MOVZX64Rm16toROffset( x86IntRegType to, x86IntRegType from, int offset )
{
RexRB(1,to,from);
write16( 0xB70F );
WriteRmOffsetFrom(to,from,offset);
}
/* movzx m16 to r64 */
void MOVZX64M16toR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP2(0x0F, 0xB7), true, to, from, 0);
}
#endif
/* cmovbe r32 to r32 */
void CMOVBE32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x46, to, from );
}
/* cmovbe m32 to r32*/
void CMOVBE32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x46, to, from );
}
/* cmovb r32 to r32 */
void CMOVB32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x42, to, from );
}
/* cmovb m32 to r32*/
void CMOVB32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x42, to, from );
}
/* cmovae r32 to r32 */
void CMOVAE32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x43, to, from );
}
/* cmovae m32 to r32*/
void CMOVAE32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x43, to, from );
}
/* cmova r32 to r32 */
void CMOVA32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x47, to, from );
}
/* cmova m32 to r32*/
void CMOVA32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x47, to, from );
}
/* cmovo r32 to r32 */
void CMOVO32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x40, to, from );
}
/* cmovo m32 to r32 */
void CMOVO32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x40, to, from );
}
/* cmovp r32 to r32 */
void CMOVP32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x4A, to, from );
}
/* cmovp m32 to r32 */
void CMOVP32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x4A, to, from );
}
/* cmovs r32 to r32 */
void CMOVS32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x48, to, from );
}
/* cmovs m32 to r32 */
void CMOVS32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x48, to, from );
}
/* cmovno r32 to r32 */
void CMOVNO32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x41, to, from );
}
/* cmovno m32 to r32 */
void CMOVNO32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x41, to, from );
}
/* cmovnp r32 to r32 */
void CMOVNP32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x4B, to, from );
}
/* cmovnp m32 to r32 */
void CMOVNP32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x4B, to, from );
}
/* cmovns r32 to r32 */
void CMOVNS32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x49, to, from );
}
/* cmovns m32 to r32 */
void CMOVNS32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x49, to, from );
}
/* cmovne r32 to r32 */
void CMOVNE32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x45, to, from );
}
/* cmovne m32 to r32*/
void CMOVNE32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x45, to, from );
}
/* cmove r32 to r32*/
void CMOVE32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x44, to, from );
}
/* cmove m32 to r32*/
void CMOVE32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x44, to, from );
}
/* cmovg r32 to r32*/
void CMOVG32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x4F, to, from );
}
/* cmovg m32 to r32*/
void CMOVG32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x4F, to, from );
}
/* cmovge r32 to r32*/
void CMOVGE32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x4D, to, from );
}
/* cmovge m32 to r32*/
void CMOVGE32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x4D, to, from );
}
/* cmovl r32 to r32*/
void CMOVL32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x4C, to, from );
}
/* cmovl m32 to r32*/
void CMOVL32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x4C, to, from );
}
/* cmovle r32 to r32*/
void CMOVLE32RtoR( x86IntRegType to, x86IntRegType from )
{
CMOV32RtoR( 0x4E, to, from );
}
/* cmovle m32 to r32*/
void CMOVLE32MtoR( x86IntRegType to, uptr from )
{
CMOV32MtoR( 0x4E, to, from );
}
////////////////////////////////////
// arithmetic instructions /
////////////////////////////////////
/* add imm32 to r64 */
void ADD64ItoR( x86IntRegType to, u32 from )
{
RexB(1, to);
if (from <= 0x7f)
{
write8(0x83);
ModRM( 3, 0, to );
write8(from);
}
else
{
if (to == RAX) {
write8( 0x05 );
} else {
write8( 0x81 );
ModRM( 3, 0, to );
}
write32( from );
}
}
/* add m64 to r64 */
void ADD64MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP1(0x03), true, to, from, 0);
}
/* add r64 to r64 */
void ADD64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1, from, to);
write8( 0x01 );
ModRM( 3, from, to );
}
/* add imm32 to r32 */
void ADD32ItoR( x86IntRegType to, u32 from )
{
RexB(0, to);
if ( to == EAX) {
write8( 0x05 );
}
else {
write8( 0x81 );
ModRM( 3, 0, to );
}
write32( from );
}
/* add imm32 to m32 */
void ADD32ItoM( uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0x81), false, 0, to, 4);
write32(from);
}
// add imm32 to [r32+off]
void ADD32ItoRmOffset( x86IntRegType to, u32 from, int offset)
{
RexB(0,to);
write8( 0x81 );
WriteRmOffset(to,offset);
write32(from);
}
/* add r32 to r32 */
void ADD32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0, from, to);
write8( 0x01 );
ModRM( 3, from, to );
}
/* add r32 to m32 */
void ADD32RtoM(uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x01), true, from, to, 0);
}
/* add m32 to r32 */
void ADD32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x03), true, to, from, 0);
}
// add r16 to r16
void ADD16RtoR( x86IntRegType to , x86IntRegType from )
{
write8(0x66);
RexRB(0,to,from);
write8( 0x03 );
ModRM( 3, to, from );
}
/* add imm16 to r16 */
void ADD16ItoR( x86IntRegType to, u16 from )
{
write8( 0x66 );
RexB(0,to);
if ( to == EAX)
{
write8( 0x05 );
}
else
{
write8( 0x81 );
ModRM( 3, 0, to );
}
write16( from );
}
/* add imm16 to m16 */
void ADD16ItoM( uptr to, u16 from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x81), false, 0, to, 2);
write16( from );
}
/* add r16 to m16 */
void ADD16RtoM(uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x01), true, from, to, 0);
}
/* add m16 to r16 */
void ADD16MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x03), true, to, from, 0);
}
// add m8 to r8
void ADD8MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x02), true, to, from, 0);
}
/* adc imm32 to r32 */
void ADC32ItoR( x86IntRegType to, u32 from )
{
RexB(0,to);
if ( to == EAX ) {
write8( 0x15 );
}
else {
write8( 0x81 );
ModRM( 3, 2, to );
}
write32( from );
}
/* adc imm32 to m32 */
void ADC32ItoM( uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0x81), false, 2, to, 4);
write32(from);
}
/* adc r32 to r32 */
void ADC32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x11 );
ModRM( 3, from, to );
}
/* adc m32 to r32 */
void ADC32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x13), true, to, from, 0);
}
// adc r32 to m32
void ADC32RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x11), true, from, to, 0);
}
#ifdef __x86_64__
void INC32R( x86IntRegType to )
{
write8( 0xFF );
ModRM(3,0,to);
}
#else
/* inc r32 */
void INC32R( x86IntRegType to )
{
X86_64ASSERT();
write8( 0x40 + to );
}
#endif
/* inc m32 */
void INC32M( uptr to )
{
MEMADDR_OP(0, VAROP1(0xFF), false, 0, to, 0);
}
/* inc r16 */
void INC16R( x86IntRegType to )
{
X86_64ASSERT();
write8( 0x66 );
write8( 0x40 + to );
}
/* inc m16 */
void INC16M( uptr to )
{
MEMADDR_OP(0, VAROP2(0x66, 0xFF), false, 0, to, 0);
}
/* sub imm32 to r64 */
void SUB64ItoR( x86IntRegType to, u32 from )
{
RexB(1, to);
if (from <= 0x7f)
{
write8(0x83);
ModRM( 3, 5, to );
write8(from);
}
else
{
if ( to == RAX ) {
write8( 0x2D );
}
else {
write8( 0x81 );
ModRM( 3, 5, to );
}
write32( from );
}
}
/* sub r64 to r64 */
void SUB64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1, from, to);
write8( 0x29 );
ModRM( 3, from, to );
}
/* sub m64 to r64 */
void SUB64MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP1(0x2B), true, to, from, 0);
}
/* sub imm32 to r32 */
void SUB32ItoR( x86IntRegType to, u32 from )
{
RexB(0,to);
if ( to == EAX ) {
write8( 0x2D );
}
else {
write8( 0x81 );
ModRM( 3, 5, to );
}
write32( from );
}
/* sub imm32 to m32 */
void SUB32ItoM( uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0x81), false, 5, to, 4);
write32(from);
}
/* sub r32 to r32 */
void SUB32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0, from, to);
write8( 0x29 );
ModRM( 3, from, to );
}
/* sub m32 to r32 */
void SUB32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x2B), true, to, from, 0);
}
// sub r32 to m32
void SUB32RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x29), true, from, to, 0);
}
// sub r16 to r16
void SUB16RtoR( x86IntRegType to, u16 from )
{
write8(0x66);
RexRB(0,to,from);
write8( 0x2b );
ModRM( 3, to, from );
}
/* sub imm16 to r16 */
void SUB16ItoR( x86IntRegType to, u16 from ) {
write8( 0x66 );
RexB(0,to);
if ( to == EAX ) {
write8( 0x2D );
} else {
write8( 0x81 );
ModRM( 3, 5, to );
}
write16( from );
}
/* sub imm16 to m16 */
void SUB16ItoM( uptr to, u16 from ) {
MEMADDR_OP(0, VAROP2(0x66, 0x81), false, 5, to, 2);
write16( from );
}
/* sub m16 to r16 */
void SUB16MtoR( x86IntRegType to, uptr from ) {
MEMADDR_OP(0, VAROP2(0x66, 0x2B), true, to, from, 0);
}
/* sbb r64 to r64 */
void SBB64RtoR( x86IntRegType to, x86IntRegType from ) {
RexRB(1, from,to);
write8( 0x19 );
ModRM( 3, from, to );
}
/* sbb imm32 to r32 */
void SBB32ItoR( x86IntRegType to, u32 from ) {
RexB(0,to);
if ( to == EAX ) {
write8( 0x1D );
} else {
write8( 0x81 );
ModRM( 3, 3, to );
}
write32( from );
}
/* sbb imm32 to m32 */
void SBB32ItoM( uptr to, u32 from ) {
MEMADDR_OP(0, VAROP1(0x81), false, 3, to, 4);
write32( from );
}
/* sbb r32 to r32 */
void SBB32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x19 );
ModRM( 3, from, to );
}
/* sbb m32 to r32 */
void SBB32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x1B), true, to, from, 0);
}
/* sbb r32 to m32 */
void SBB32RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x19), true, from, to, 0);
}
#ifdef __x86_64__
void DEC32R( x86IntRegType to )
{
write8( 0xFF );
ModRM(3,1,to);
}
#else
/* dec r32 */
void DEC32R( x86IntRegType to )
{
X86_64ASSERT();
write8( 0x48 + to );
}
#endif
/* dec m32 */
void DEC32M( uptr to )
{
MEMADDR_OP(0, VAROP1(0xFF), false, 1, to, 0);
}
/* dec r16 */
void DEC16R( x86IntRegType to )
{
X86_64ASSERT();
write8( 0x66 );
write8( 0x48 + to );
}
/* dec m16 */
void DEC16M( uptr to )
{
MEMADDR_OP(0, VAROP2(0x66, 0xFF), false, 1, to, 0);
}
/* mul eax by r32 to edx:eax */
void MUL32R( x86IntRegType from )
{
RexB(0,from);
write8( 0xF7 );
ModRM( 3, 4, from );
}
/* imul eax by r32 to edx:eax */
void IMUL32R( x86IntRegType from )
{
RexB(0,from);
write8( 0xF7 );
ModRM( 3, 5, from );
}
/* mul eax by m32 to edx:eax */
void MUL32M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xF7), false, 4, from, 0);
}
/* imul eax by m32 to edx:eax */
void IMUL32M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xF7), false, 5, from, 0);
}
/* imul r32 by r32 to r32 */
void IMUL32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write16( 0xAF0F );
ModRM( 3, to, from );
}
/* div eax by r32 to edx:eax */
void DIV32R( x86IntRegType from )
{
RexB(0,from);
write8( 0xF7 );
ModRM( 3, 6, from );
}
/* idiv eax by r32 to edx:eax */
void IDIV32R( x86IntRegType from )
{
RexB(0,from);
write8( 0xF7 );
ModRM( 3, 7, from );
}
/* div eax by m32 to edx:eax */
void DIV32M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xF7), false, 6, from, 0);
}
/* idiv eax by m32 to edx:eax */
void IDIV32M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xF7), false, 7, from, 0);
}
////////////////////////////////////
// shifting instructions /
////////////////////////////////////
/* shl imm8 to r64 */
void SHL64ItoR( x86IntRegType to, u8 from )
{
RexB(1, to);
if ( from == 1 )
{
write8( 0xD1 );
ModRM( 3, 4, to );
return;
}
write8( 0xC1 );
ModRM( 3, 4, to );
write8( from );
}
/* shl cl to r64 */
void SHL64CLtoR( x86IntRegType to )
{
RexB(1, to);
write8( 0xD3 );
ModRM( 3, 4, to );
}
/* shr imm8 to r64 */
void SHR64ItoR( x86IntRegType to, u8 from )
{
RexB(1,to);
if ( from == 1 ) {
write8( 0xD1 );
ModRM( 3, 5, to );
return;
}
write8( 0xC1 );
ModRM( 3, 5, to );
write8( from );
}
/* shr cl to r64 */
void SHR64CLtoR( x86IntRegType to )
{
RexB(1, to);
write8( 0xD3 );
ModRM( 3, 5, to );
}
/* shl imm8 to r32 */
void SHL32ItoR( x86IntRegType to, u8 from )
{
RexB(0, to);
if ( from == 1 )
{
write8( 0xD1 );
write8( 0xE0 | (to & 0x7) );
return;
}
write8( 0xC1 );
ModRM( 3, 4, to );
write8( from );
}
/* shl imm8 to m32 */
void SHL32ItoM( uptr to, u8 from )
{
if ( from == 1 )
{
MEMADDR_OP(0, VAROP1(0xD1), false, 4, to, 0);
}
else
{
MEMADDR_OP(0, VAROP1(0xC1), false, 4, to, 1);
write8( from );
}
}
/* shl cl to r32 */
void SHL32CLtoR( x86IntRegType to )
{
RexB(0,to);
write8( 0xD3 );
ModRM( 3, 4, to );
}
// shl imm8 to r16
void SHL16ItoR( x86IntRegType to, u8 from )
{
write8(0x66);
RexB(0,to);
if ( from == 1 )
{
write8( 0xD1 );
write8( 0xE0 | (to & 0x7) );
return;
}
write8( 0xC1 );
ModRM( 3, 4, to );
write8( from );
}
// shl imm8 to r8
void SHL8ItoR( x86IntRegType to, u8 from )
{
RexB(0,to);
if ( from == 1 )
{
write8( 0xD0 );
write8( 0xE0 | (to & 0x7) );
return;
}
write8( 0xC0 );
ModRM( 3, 4, to );
write8( from );
}
/* shr imm8 to r32 */
void SHR32ItoR( x86IntRegType to, u8 from ) {
RexB(0,to);
if ( from == 1 )
{
write8( 0xD1 );
write8( 0xE8 | (to & 0x7) );
}
else
{
write8( 0xC1 );
ModRM( 3, 5, to );
write8( from );
}
}
/* shr imm8 to m32 */
void SHR32ItoM( uptr to, u8 from )
{
if ( from == 1 )
{
MEMADDR_OP(0, VAROP1(0xD1), false, 5, to, 0);
}
else
{
MEMADDR_OP(0, VAROP1(0xC1), false, 5, to, 1);
write8( from );
}
}
/* shr cl to r32 */
void SHR32CLtoR( x86IntRegType to )
{
RexB(0,to);
write8( 0xD3 );
ModRM( 3, 5, to );
}
// shr imm8 to r8
void SHR8ItoR( x86IntRegType to, u8 from )
{
RexB(0,to);
if ( from == 1 )
{
write8( 0xD0 );
write8( 0xE8 | (to & 0x7) );
}
else
{
write8( 0xC0 );
ModRM( 3, 5, to );
write8( from );
}
}
/* sar imm8 to r64 */
void SAR64ItoR( x86IntRegType to, u8 from )
{
RexB(1,to);
if ( from == 1 )
{
write8( 0xD1 );
ModRM( 3, 7, to );
return;
}
write8( 0xC1 );
ModRM( 3, 7, to );
write8( from );
}
/* sar cl to r64 */
void SAR64CLtoR( x86IntRegType to )
{
RexB(1, to);
write8( 0xD3 );
ModRM( 3, 7, to );
}
/* sar imm8 to r32 */
void SAR32ItoR( x86IntRegType to, u8 from )
{
RexB(0,to);
if ( from == 1 )
{
write8( 0xD1 );
ModRM( 3, 7, to );
return;
}
write8( 0xC1 );
ModRM( 3, 7, to );
write8( from );
}
/* sar imm8 to m32 */
void SAR32ItoM( uptr to, u8 from )
{
if (from == 1)
{
MEMADDR_OP(0, VAROP1(0xD1), false, 7, to, 0);
}
else
{
MEMADDR_OP(0, VAROP1(0xC1), false, 7, to, 1);
write8( from );
}
}
/* sar cl to r32 */
void SAR32CLtoR( x86IntRegType to )
{
RexB(0,to);
write8( 0xD3 );
ModRM( 3, 7, to );
}
// sar imm8 to r16
void SAR16ItoR( x86IntRegType to, u8 from )
{
write8(0x66);
RexB(0,to);
if ( from == 1 )
{
write8( 0xD1 );
ModRM( 3, 7, to );
return;
}
write8( 0xC1 );
ModRM( 3, 7, to );
write8( from );
}
void ROR32ItoR( x86IntRegType to,u8 from )
{
RexB(0,to);
if ( from == 1 ) {
write8( 0xd1 );
write8( 0xc8 | to );
}
else
{
write8( 0xc1 );
write8( 0xc8 | to );
write8( from );
}
}
void RCR32ItoR( x86IntRegType to, u8 from )
{
RexB(0,to);
if ( from == 1 ) {
write8( 0xd1 );
write8( 0xd8 | to );
}
else
{
write8( 0xc1 );
write8( 0xd8 | to );
write8( from );
}
}
// shld imm8 to r32
void SHLD32ItoR( x86IntRegType to, x86IntRegType from, u8 shift )
{
RexRB(0,from,to);
write8( 0x0F );
write8( 0xA4 );
ModRM( 3, from, to );
write8( shift );
}
// shrd imm8 to r32
void SHRD32ItoR( x86IntRegType to, x86IntRegType from, u8 shift )
{
RexRB(0,from,to);
write8( 0x0F );
write8( 0xAC );
ModRM( 3, from, to );
write8( shift );
}
////////////////////////////////////
// logical instructions /
////////////////////////////////////
/* or imm32 to r32 */
void OR64ItoR( x86IntRegType to, u32 from )
{
RexB(1, to);
if ( to == EAX ) {
write8( 0x0D );
} else {
write8( 0x81 );
ModRM( 3, 1, to );
}
write32( from );
}
/* or m64 to r64 */
void OR64MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP1(0x0B), true, to, from, 0);
}
/* or r64 to r64 */
void OR64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1, from, to);
write8( 0x09 );
ModRM( 3, from, to );
}
// or r32 to m64
void OR64RtoM(uptr to, x86IntRegType from )
{
MEMADDR_OP(1, VAROP1(0x09), true, from, to, 0);
}
/* or imm32 to r32 */
void OR32ItoR( x86IntRegType to, u32 from )
{
RexB(0,to);
if ( to == EAX ) {
write8( 0x0D );
}
else {
write8( 0x81 );
ModRM( 3, 1, to );
}
write32( from );
}
/* or imm32 to m32 */
void OR32ItoM(uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0x81), false, 1, to, 4);
write32(from);
}
/* or r32 to r32 */
void OR32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x09 );
ModRM( 3, from, to );
}
/* or r32 to m32 */
void OR32RtoM(uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x09), true, from, to, 0);
}
/* or m32 to r32 */
void OR32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x0B), true, to, from, 0);
}
// or r16 to r16
void OR16RtoR( x86IntRegType to, x86IntRegType from )
{
write8(0x66);
RexRB(0,from,to);
write8( 0x09 );
ModRM( 3, from, to );
}
// or imm16 to r16
void OR16ItoR( x86IntRegType to, u16 from )
{
write8(0x66);
RexB(0,to);
if ( to == EAX ) {
write8( 0x0D );
}
else {
write8( 0x81 );
ModRM( 3, 1, to );
}
write16( from );
}
// or imm16 to m316
void OR16ItoM( uptr to, u16 from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x81), false, 1, to, 2);
write16( from );
}
/* or m16 to r16 */
void OR16MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x0B), true, to, from, 0);
}
// or r16 to m16
void OR16RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x09), true, from, to, 0);
}
// or r8 to r8
void OR8RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x08 );
ModRM( 3, from, to );
}
// or r8 to m8
void OR8RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x08), true, from, to, 0);
}
// or imm8 to m8
void OR8ItoM( uptr to, u8 from )
{
MEMADDR_OP(0, VAROP1(0x80), false, 1, to, 1);
write8( from );
}
// or m8 to r8
void OR8MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x0A), true, to, from, 0);
}
/* xor imm32 to r64 */
void XOR64ItoR( x86IntRegType to, u32 from )
{
RexB(1,to);
if ( to == EAX ) {
write8( 0x35 );
} else {
write8( 0x81 );
ModRM( 3, 6, to );
}
write32( from );
}
/* xor r64 to r64 */
void XOR64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1, from, to);
write8( 0x31 );
ModRM( 3, from, to );
}
/* xor m64 to r64 */
void XOR64MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP1(0x33), true, to, from, 0);
}
/* xor r64 to m64 */
void XOR64RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(1, VAROP1(0x31), true, from, to, 0);
}
/* xor imm32 to r32 */
void XOR32ItoR( x86IntRegType to, u32 from )
{
RexB(0,to);
if ( to == EAX ) {
write8( 0x35 );
}
else {
write8( 0x81 );
ModRM( 3, 6, to );
}
write32( from );
}
/* xor imm32 to m32 */
void XOR32ItoM( uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0x81), false, 6, to, 4);
write32( from );
}
/* xor r32 to r32 */
void XOR32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x31 );
ModRM( 3, from, to );
}
/* xor r16 to r16 */
void XOR16RtoR( x86IntRegType to, x86IntRegType from )
{
write8( 0x66 );
RexRB(0,from,to);
write8( 0x31 );
ModRM( 3, from, to );
}
/* xor r32 to m32 */
void XOR32RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x31), true, from, to, 0);
}
/* xor m32 to r32 */
void XOR32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x33), true, to, from, 0);
}
// xor imm16 to r16
void XOR16ItoR( x86IntRegType to, u16 from )
{
write8(0x66);
RexB(0,to);
if ( to == EAX ) {
write8( 0x35 );
}
else {
write8( 0x81 );
ModRM( 3, 6, to );
}
write16( from );
}
// xor r16 to m16
void XOR16RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x31), true, from, to, 0);
}
/* and imm32 to r64 */
void AND64I32toR( x86IntRegType to, u32 from )
{
RexB(1, to);
if ( to == EAX ) {
write8( 0x25 );
} else {
write8( 0x81 );
ModRM( 3, 0x4, to );
}
write32( from );
}
/* and m64 to r64 */
void AND64MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP1(0x23), true, to, from, 0);
}
/* and r64 to m64 */
void AND64RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(1, VAROP1(0x21), true, from, to, 0);
}
/* and r64 to r64 */
void AND64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1, from, to);
write8( 0x21 );
ModRM( 3, from, to );
}
/* and imm32 to m64 */
void AND64I32toM( uptr to, u32 from )
{
MEMADDR_OP(1, VAROP1(0x81), false, 4, to, 4);
write32( from );
}
/* and imm32 to r32 */
void AND32ItoR( x86IntRegType to, u32 from )
{
RexB(0,to);
if ( to == EAX ) {
write8( 0x25 );
} else {
write8( 0x81 );
ModRM( 3, 0x4, to );
}
write32( from );
}
/* and sign ext imm8 to r32 */
void AND32I8toR( x86IntRegType to, u8 from )
{
RexB(0,to);
write8( 0x83 );
ModRM( 3, 0x4, to );
write8( from );
}
/* and imm32 to m32 */
void AND32ItoM( uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0x81), false, 4, to, 4);
write32(from);
}
/* and sign ext imm8 to m32 */
void AND32I8toM( uptr to, u8 from )
{
MEMADDR_OP(0, VAROP1(0x83), false, 4, to, 1);
write8( from );
}
/* and r32 to r32 */
void AND32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x21 );
ModRM( 3, from, to );
}
/* and r32 to m32 */
void AND32RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x21), true, from, to, 0);
}
/* and m32 to r32 */
void AND32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x23), true, to, from, 0);
}
// and r16 to r16
void AND16RtoR( x86IntRegType to, x86IntRegType from )
{
write8(0x66);
RexRB(0,to,from);
write8( 0x23 );
ModRM( 3, to, from );
}
/* and imm16 to r16 */
void AND16ItoR( x86IntRegType to, u16 from )
{
write8(0x66);
RexB(0,to);
if ( to == EAX ) {
write8( 0x25 );
} else {
write8( 0x81 );
ModRM( 3, 0x4, to );
}
write16( from );
}
/* and imm16 to m16 */
void AND16ItoM( uptr to, u16 from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x81), false, 4, to, 2);
write16( from );
}
/* and r16 to m16 */
void AND16RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x21), true, from, to, 0);
}
/* and m16 to r16 */
void AND16MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x23), true, to, from, 0);
}
/* and imm8 to r8 */
void AND8ItoR( x86IntRegType to, u8 from )
{
RexB(0,to);
if ( to == EAX ) {
write8( 0x24 );
} else {
write8( 0x80 );
ModRM( 3, 0x4, to );
}
write8( from );
}
/* and imm8 to m8 */
void AND8ItoM( uptr to, u8 from )
{
MEMADDR_OP(0, VAROP1(0x80), false, 4, to, 1);
write8( from );
}
// and r8 to r8
void AND8RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,to,from);
write8( 0x22 );
ModRM( 3, to, from );
}
/* and r8 to m8 */
void AND8RtoM( uptr to, x86IntRegType from )
{
MEMADDR_OP(0, VAROP1(0x20), true, from, to, 0);
}
/* and m8 to r8 */
void AND8MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x22), true, to, from, 0);
}
/* not r64 */
void NOT64R( x86IntRegType from )
{
RexB(1, from);
write8( 0xF7 );
ModRM( 3, 2, from );
}
/* not r32 */
void NOT32R( x86IntRegType from )
{
RexB(0,from);
write8( 0xF7 );
ModRM( 3, 2, from );
}
// not m32
void NOT32M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xF7), false, 2, from, 0);
}
/* neg r64 */
void NEG64R( x86IntRegType from )
{
RexB(1, from);
write8( 0xF7 );
ModRM( 3, 3, from );
}
/* neg r32 */
void NEG32R( x86IntRegType from )
{
RexB(0,from);
write8( 0xF7 );
ModRM( 3, 3, from );
}
void NEG32M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xF7), false, 3, from, 0);
}
/* neg r16 */
void NEG16R( x86IntRegType from )
{
write8( 0x66 );
RexB(0,from);
write8( 0xF7 );
ModRM( 3, 3, from );
}
////////////////////////////////////
// jump instructions /
////////////////////////////////////
u8* JMP( uptr to ) {
uptr jump = ( x86Ptr - (s8*)to ) - 1;
if ( jump > 0x7f ) {
assert( to <= 0xffffffff );
return (u8*)JMP32( to );
} else {
return (u8*)JMP8( to );
}
}
/* jmp rel8 */
u8* JMP8( u8 to )
{
write8( 0xEB );
write8( to );
return x86Ptr - 1;
}
/* jmp rel32 */
u32* JMP32( uptr to )
{
assert(SPTR32((sptr)to));
write8( 0xE9 );
write32( (sptr)to );
return (u32*)(x86Ptr - 4 );
}
/* jmp r32/r64 */
void JMPR( x86IntRegType to )
{
RexB(0, to);
write8( 0xFF );
ModRM( 3, 4, to );
}
// jmp m32
void JMP32M( uptr to )
{
/* FIXME */
MEMADDR_OP(0, VAROP1(0xFF), false, 4, to, 0);
}
/* jp rel8 */
u8* JP8( u8 to ) {
return J8Rel( 0x7A, to );
}
/* jnp rel8 */
u8* JNP8( u8 to ) {
return J8Rel( 0x7B, to );
}
/* je rel8 */
u8* JE8( u8 to ) {
return J8Rel( 0x74, to );
}
/* jz rel8 */
u8* JZ8( u8 to )
{
return J8Rel( 0x74, to );
}
/* js rel8 */
u8* JS8( u8 to )
{
return J8Rel( 0x78, to );
}
/* jns rel8 */
u8* JNS8( u8 to )
{
return J8Rel( 0x79, to );
}
/* jg rel8 */
u8* JG8( u8 to )
{
return J8Rel( 0x7F, to );
}
/* jge rel8 */
u8* JGE8( u8 to )
{
return J8Rel( 0x7D, to );
}
/* jl rel8 */
u8* JL8( u8 to )
{
return J8Rel( 0x7C, to );
}
/* ja rel8 */
u8* JA8( u8 to )
{
return J8Rel( 0x77, to );
}
u8* JAE8( u8 to )
{
return J8Rel( 0x73, to );
}
/* jb rel8 */
u8* JB8( u8 to )
{
return J8Rel( 0x72, to );
}
/* jbe rel8 */
u8* JBE8( u8 to )
{
return J8Rel( 0x76, to );
}
/* jle rel8 */
u8* JLE8( u8 to )
{
return J8Rel( 0x7E, to );
}
/* jne rel8 */
u8* JNE8( u8 to )
{
return J8Rel( 0x75, to );
}
/* jnz rel8 */
u8* JNZ8( u8 to )
{
return J8Rel( 0x75, to );
}
/* jng rel8 */
u8* JNG8( u8 to )
{
return J8Rel( 0x7E, to );
}
/* jnge rel8 */
u8* JNGE8( u8 to )
{
return J8Rel( 0x7C, to );
}
/* jnl rel8 */
u8* JNL8( u8 to )
{
return J8Rel( 0x7D, to );
}
/* jnle rel8 */
u8* JNLE8( u8 to )
{
return J8Rel( 0x7F, to );
}
/* jo rel8 */
u8* JO8( u8 to )
{
return J8Rel( 0x70, to );
}
/* jno rel8 */
u8* JNO8( u8 to )
{
return J8Rel( 0x71, to );
}
// jb rel8
u16* JB16( u16 to )
{
return J16Rel( 0x82, to );
}
// jb rel32
u32* JB32( u32 to )
{
return J32Rel( 0x82, to );
}
/* je rel32 */
u32* JE32( u32 to )
{
return J32Rel( 0x84, to );
}
/* jz rel32 */
u32* JZ32( u32 to )
{
return J32Rel( 0x84, to );
}
/* jg rel32 */
u32* JG32( u32 to )
{
return J32Rel( 0x8F, to );
}
/* jge rel32 */
u32* JGE32( u32 to )
{
return J32Rel( 0x8D, to );
}
/* jl rel32 */
u32* JL32( u32 to )
{
return J32Rel( 0x8C, to );
}
/* jle rel32 */
u32* JLE32( u32 to )
{
return J32Rel( 0x8E, to );
}
/* jae rel32 */
u32* JAE32( u32 to )
{
return J32Rel( 0x83, to );
}
/* jne rel32 */
u32* JNE32( u32 to )
{
return J32Rel( 0x85, to );
}
/* jnz rel32 */
u32* JNZ32( u32 to )
{
return J32Rel( 0x85, to );
}
/* jng rel32 */
u32* JNG32( u32 to )
{
return J32Rel( 0x8E, to );
}
/* jnge rel32 */
u32* JNGE32( u32 to )
{
return J32Rel( 0x8C, to );
}
/* jnl rel32 */
u32* JNL32( u32 to )
{
return J32Rel( 0x8D, to );
}
/* jnle rel32 */
u32* JNLE32( u32 to )
{
return J32Rel( 0x8F, to );
}
/* jo rel32 */
u32* JO32( u32 to )
{
return J32Rel( 0x80, to );
}
/* jno rel32 */
u32* JNO32( u32 to )
{
return J32Rel( 0x81, to );
}
// js rel32
u32* JS32( u32 to )
{
return J32Rel( 0x88, to );
}
/* call func */
void CALLFunc( uptr func )
{
sptr p = MEMADDR_(func, 5);
if (SPTR32(p))
{
CALL32(p);
}
else
{
MOV64ItoR(X86_TEMP, func);
CALL64R(X86_TEMP);
}
}
/* call rel32 */
void CALL32( s32 to )
{
write8( 0xE8 );
write32( to );
}
/* call r32 */
void CALL32R( x86IntRegType to )
{
RexB(0, to);
write8( 0xFF );
ModRM( 3, 2, to );
}
/* call r64 */
void CALL64R( x86IntRegType to )
{
RexB(0, to);
write8( 0xFF );
ModRM( 3, 2, to );
}
////////////////////////////////////
// misc instructions /
////////////////////////////////////
/* cmp imm32 to r64 */
void CMP64I32toR( x86IntRegType to, u32 from )
{
RexB(1, to);
if ( to == EAX ) {
write8( 0x3D );
}
else {
write8( 0x81 );
ModRM( 3, 7, to );
}
write32( from );
}
/* cmp m64 to r64 */
void CMP64MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(1, VAROP1(0x3B), true, 2, from, 0);
}
// cmp r64 to r64
void CMP64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1,from,to);
write8( 0x39 );
ModRM( 3, from, to );
}
/* cmp imm32 to r32 */
void CMP32ItoR( x86IntRegType to, u32 from )
{
RexB(0,to);
if ( to == EAX ) {
write8( 0x3D );
}
else {
write8( 0x81 );
ModRM( 3, 7, to );
}
write32( from );
}
/* cmp imm32 to m32 */
void CMP32ItoM( uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0x81), false, 7, to, 4);
write32(from);
}
/* cmp r32 to r32 */
void CMP32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x39 );
ModRM( 3, from, to );
}
/* cmp m32 to r32 */
void CMP32MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x3B), true, to, from, 0);
}
// cmp imm8 to [r32]
void CMP32I8toRm( x86IntRegType to, u8 from)
{
RexB(0,to);
write8( 0x83 );
ModRM( 0, 7, to );
write8(from);
}
// cmp imm32 to [r32+off]
void CMP32I8toRmOffset8( x86IntRegType to, u8 from, u8 off)
{
RexB(0,to);
write8( 0x83 );
ModRM( 1, 7, to );
write8(off);
write8(from);
}
// cmp imm8 to [r32]
void CMP32I8toM( uptr to, u8 from)
{
MEMADDR_OP(0, VAROP1(0x83), false, 7, to, 1);
write8( from );
}
/* cmp imm16 to r16 */
void CMP16ItoR( x86IntRegType to, u16 from )
{
write8( 0x66 );
RexB(0,to);
if ( to == EAX )
{
write8( 0x3D );
}
else
{
write8( 0x81 );
ModRM( 3, 7, to );
}
write16( from );
}
/* cmp imm16 to m16 */
void CMP16ItoM( uptr to, u16 from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x81), false, 7, to, 2);
write16( from );
}
/* cmp r16 to r16 */
void CMP16RtoR( x86IntRegType to, x86IntRegType from )
{
write8( 0x66 );
RexRB(0,from,to);
write8( 0x39 );
ModRM( 3, from, to );
}
/* cmp m16 to r16 */
void CMP16MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP2(0x66, 0x3B), true, to, from, 0);
}
// cmp imm8 to r8
void CMP8ItoR( x86IntRegType to, u8 from )
{
RexB(0,to);
if ( to == EAX )
{
write8( 0x3C );
}
else
{
write8( 0x80 );
ModRM( 3, 7, to );
}
write8( from );
}
// cmp m8 to r8
void CMP8MtoR( x86IntRegType to, uptr from )
{
MEMADDR_OP(0, VAROP1(0x3A), true, to, from, 0);
}
/* test r64 to r64 */
void TEST64RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(1, from, to);
write8( 0x85 );
ModRM( 3, from, to );
}
/* test imm32 to r32 */
void TEST32ItoR( x86IntRegType to, u32 from )
{
RexB(0,to);
if ( to == EAX )
{
write8( 0xA9 );
}
else
{
write8( 0xF7 );
ModRM( 3, 0, to );
}
write32( from );
}
void TEST32ItoM( uptr to, u32 from )
{
MEMADDR_OP(0, VAROP1(0xF7), false, 0, to, 4);
write32( from );
}
/* test r32 to r32 */
void TEST32RtoR( x86IntRegType to, x86IntRegType from )
{
RexRB(0,from,to);
write8( 0x85 );
ModRM( 3, from, to );
}
// test imm32 to [r32]
void TEST32ItoRm( x86IntRegType to, u32 from )
{
RexB(0,to);
write8( 0xF7 );
ModRM( 0, 0, to );
write32(from);
}
// test imm16 to r16
void TEST16ItoR( x86IntRegType to, u16 from )
{
write8(0x66);
RexB(0,to);
if ( to == EAX )
{
write8( 0xA9 );
}
else
{
write8( 0xF7 );
ModRM( 3, 0, to );
}
write16( from );
}
// test r16 to r16
void TEST16RtoR( x86IntRegType to, x86IntRegType from )
{
write8(0x66);
RexRB(0,from,to);
write16( 0x85 );
ModRM( 3, from, to );
}
// test imm8 to r8
void TEST8ItoR( x86IntRegType to, u8 from )
{
RexB(0,to);
if ( to == EAX )
{
write8( 0xA8 );
}
else
{
write8( 0xF6 );
ModRM( 3, 0, to );
}
write8( from );
}
// test imm8 to r8
void TEST8ItoM( uptr to, u8 from )
{
MEMADDR_OP(0, VAROP1(0xF6), false, 0, to, 1);
write8( from );
}
/* sets r8 */
void SETS8R( x86IntRegType to )
{
SET8R( 0x98, to );
}
/* setl r8 */
void SETL8R( x86IntRegType to )
{
SET8R( 0x9C, to );
}
// setge r8
void SETGE8R( x86IntRegType to ) { SET8R(0x9d, to); }
// setg r8
void SETG8R( x86IntRegType to ) { SET8R(0x9f, to); }
// seta r8
void SETA8R( x86IntRegType to ) { SET8R(0x97, to); }
// setae r8
void SETAE8R( x86IntRegType to ) { SET8R(0x99, to); }
/* setb r8 */
void SETB8R( x86IntRegType to ) { SET8R( 0x92, to ); }
/* setb r8 */
void SETNZ8R( x86IntRegType to ) { SET8R( 0x95, to ); }
// setz r8
void SETZ8R( x86IntRegType to ) { SET8R(0x94, to); }
// sete r8
void SETE8R( x86IntRegType to ) { SET8R(0x94, to); }
/* push imm32 */
void PUSH32I( u32 from )
{
//X86_64ASSERT(); //becomes sign extended in x86_64
write8( 0x68 );
write32( from );
}
#ifdef __x86_64__
/* push r64 */
void PUSH64R( x86IntRegType from )
{
RexB(0,from);
//write8( 0x51 | from );
write8( 0x50 | from );
}
/* push m64 */
void PUSH64M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xFF), false, 6, from, 0);
}
/* pop r64 */
void POP64R( x86IntRegType from ) {
RexB(0,from);
//write8( 0x59 | from );
write8( 0x58 | from );
}
void PUSHR(x86IntRegType from) { PUSH64R(from); }
void POPR(x86IntRegType from) { POP64R(from); }
#else
/* push r32 */
void PUSH32R( x86IntRegType from ) { write8( 0x50 | from ); }
/* push m32 */
void PUSH32M( uptr from )
{
MEMADDR_OP(0, VAROP1(0xFF), false, 6, from, 0);
}
/* pop r32 */
void POP32R( x86IntRegType from ) { write8( 0x58 | from ); }
/* pushad */
void PUSHA32( void ) { write8( 0x60 ); }
/* popad */
void POPA32( void ) { write8( 0x61 ); }
void PUSHR(x86IntRegType from) { PUSH32R(from); }
void POPR(x86IntRegType from) { POP32R(from); }
#endif
/* pushfd */
void PUSHFD( void ) { write8( 0x9C ); }
/* popfd */
void POPFD( void ) { write8( 0x9D ); }
void RET( void ) { write8( 0xC3 ); }
void RET2( void ) { write16( 0xc3f3 ); }
void CBW( void ) { write16( 0x9866 ); }
void CWD( void ) { write8( 0x98 ); }
void CDQ( void ) { write8( 0x99 ); }
void CWDE() { write8(0x98); }
#ifdef __x86_64__
void CDQE( void ) { RexR(1,0); write8( 0x98 ); }
#endif
void LAHF() { write8(0x9f); }
void SAHF() { write8(0x9e); }
void BT32ItoR( x86IntRegType to, x86IntRegType from )
{
write16( 0xBA0F );
write8( 0xE0 | to );
write8( from );
}
void BSRRtoR(x86IntRegType to, x86IntRegType from)
{
write16( 0xBD0F );
ModRM( 3, from, to );
}
void BSWAP32R( x86IntRegType to )
{
write8( 0x0F );
write8( 0xC8 + to );
}
// to = from + offset
void LEA16RtoR(x86IntRegType to, x86IntRegType from, u16 offset)
{
write8(0x66);
LEA32RtoR(to, from, offset);
}
void LEA32RtoR(x86IntRegType to, x86IntRegType from, u32 offset)
{
RexRB(0,to,from);
write8(0x8d);
if( (from&7) == ESP ) {
if( offset == 0 ) {
ModRM(1, to, from);
write8(0x24);
}
else if( offset < 128 ) {
ModRM(1, to, from);
write8(0x24);
write8(offset);
}
else {
ModRM(2, to, from);
write8(0x24);
write32(offset);
}
}
else {
if( offset == 0 && from != EBP && from!=ESP ) {
ModRM(0, to, from);
}
else if( offset < 128 ) {
ModRM(1, to, from);
write8(offset);
}
else {
ModRM(2, to, from);
write32(offset);
}
}
}
// to = from0 + from1
void LEA16RRtoR(x86IntRegType to, x86IntRegType from0, x86IntRegType from1)
{
write8(0x66);
LEA32RRtoR(to, from0, from1);
}
void LEA32RRtoR(x86IntRegType to, x86IntRegType from0, x86IntRegType from1)
{
RexRXB(0, to, from0, from1);
write8(0x8d);
if( (from1&7) == EBP ) {
ModRM(1, to, 4);
ModRM(0, from0, from1);
write8(0);
}
else {
ModRM(0, to, 4);
ModRM(0, from0, from1);
}
}
// to = from << scale (max is 3)
void LEA16RStoR(x86IntRegType to, x86IntRegType from, u32 scale)
{
write8(0x66);
LEA32RStoR(to, from, scale);
}
void LEA32RStoR(x86IntRegType to, x86IntRegType from, u32 scale)
{
if( to == from ) {
SHL32ItoR(to, scale);
return;
}
if( from != ESP ) {
RexRXB(0,to,from,0);
write8(0x8d);
ModRM(0, to, 4);
ModRM(scale, from, 5);
write32(0);
}
else {
assert( to != ESP );
MOV32RtoR(to, from);
LEA32RStoR(to, to, scale);
}
}
#endif
#endif