pcsxr/libpcsxcore/gte.c

902 lines
27 KiB
C

/* PCSX-Revolution - PS Emulator for Nintendo Wii
* Copyright (C) 2009-2010 PCSX-Revolution Dev Team
*
* PCSX-Revolution is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* PCSX-Revolution is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PCSX-Revolution. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* GTE functions.
*/
#include "gte.h"
#include "psxmem.h"
#define VX(n) (n < 3 ? psxRegs.CP2D.p[n << 1].sw.l : psxRegs.CP2D.p[9].sw.l)
#define VY(n) (n < 3 ? psxRegs.CP2D.p[n << 1].sw.h : psxRegs.CP2D.p[10].sw.l)
#define VZ(n) (n < 3 ? psxRegs.CP2D.p[(n << 1) + 1].sw.l : psxRegs.CP2D.p[11].sw.l)
#define MX11(n) (n < 3 ? psxRegs.CP2C.p[(n << 3)].sw.l : 0)
#define MX12(n) (n < 3 ? psxRegs.CP2C.p[(n << 3)].sw.h : 0)
#define MX13(n) (n < 3 ? psxRegs.CP2C.p[(n << 3) + 1].sw.l : 0)
#define MX21(n) (n < 3 ? psxRegs.CP2C.p[(n << 3) + 1].sw.h : 0)
#define MX22(n) (n < 3 ? psxRegs.CP2C.p[(n << 3) + 2].sw.l : 0)
#define MX23(n) (n < 3 ? psxRegs.CP2C.p[(n << 3) + 2].sw.h : 0)
#define MX31(n) (n < 3 ? psxRegs.CP2C.p[(n << 3) + 3].sw.l : 0)
#define MX32(n) (n < 3 ? psxRegs.CP2C.p[(n << 3) + 3].sw.h : 0)
#define MX33(n) (n < 3 ? psxRegs.CP2C.p[(n << 3) + 4].sw.l : 0)
#define CV1(n) (n < 3 ? (s32)psxRegs.CP2C.r[(n << 3) + 5] : 0)
#define CV2(n) (n < 3 ? (s32)psxRegs.CP2C.r[(n << 3) + 6] : 0)
#define CV3(n) (n < 3 ? (s32)psxRegs.CP2C.r[(n << 3) + 7] : 0)
#define fSX(n) ((psxRegs.CP2D.p)[((n) + 12)].sw.l)
#define fSY(n) ((psxRegs.CP2D.p)[((n) + 12)].sw.h)
#define fSZ(n) ((psxRegs.CP2D.p)[((n) + 17)].w.l) /* (n == 0) => SZ1; */
#define gteVXY0 (psxRegs.CP2D.r[0])
#define gteVX0 (psxRegs.CP2D.p[0].sw.l)
#define gteVY0 (psxRegs.CP2D.p[0].sw.h)
#define gteVZ0 (psxRegs.CP2D.p[1].sw.l)
#define gteVXY1 (psxRegs.CP2D.r[2])
#define gteVX1 (psxRegs.CP2D.p[2].sw.l)
#define gteVY1 (psxRegs.CP2D.p[2].sw.h)
#define gteVZ1 (psxRegs.CP2D.p[3].sw.l)
#define gteVXY2 (psxRegs.CP2D.r[4])
#define gteVX2 (psxRegs.CP2D.p[4].sw.l)
#define gteVY2 (psxRegs.CP2D.p[4].sw.h)
#define gteVZ2 (psxRegs.CP2D.p[5].sw.l)
#define gteRGB (psxRegs.CP2D.r[6])
#define gteR (psxRegs.CP2D.p[6].b.l)
#define gteG (psxRegs.CP2D.p[6].b.h)
#define gteB (psxRegs.CP2D.p[6].b.h2)
#define gteCODE (psxRegs.CP2D.p[6].b.h3)
#define gteOTZ (psxRegs.CP2D.p[7].w.l)
#define gteIR0 (psxRegs.CP2D.p[8].sw.l)
#define gteIR1 (psxRegs.CP2D.p[9].sw.l)
#define gteIR2 (psxRegs.CP2D.p[10].sw.l)
#define gteIR3 (psxRegs.CP2D.p[11].sw.l)
#define gteSXY0 (psxRegs.CP2D.r[12])
#define gteSX0 (psxRegs.CP2D.p[12].sw.l)
#define gteSY0 (psxRegs.CP2D.p[12].sw.h)
#define gteSXY1 (psxRegs.CP2D.r[13])
#define gteSX1 (psxRegs.CP2D.p[13].sw.l)
#define gteSY1 (psxRegs.CP2D.p[13].sw.h)
#define gteSXY2 (psxRegs.CP2D.r[14])
#define gteSX2 (psxRegs.CP2D.p[14].sw.l)
#define gteSY2 (psxRegs.CP2D.p[14].sw.h)
#define gteSXYP (psxRegs.CP2D.r[15])
#define gteSXP (psxRegs.CP2D.p[15].sw.l)
#define gteSYP (psxRegs.CP2D.p[15].sw.h)
#define gteSZ0 (psxRegs.CP2D.p[16].w.l)
#define gteSZ1 (psxRegs.CP2D.p[17].w.l)
#define gteSZ2 (psxRegs.CP2D.p[18].w.l)
#define gteSZ3 (psxRegs.CP2D.p[19].w.l)
#define gteRGB0 (psxRegs.CP2D.r[20])
#define gteR0 (psxRegs.CP2D.p[20].b.l)
#define gteG0 (psxRegs.CP2D.p[20].b.h)
#define gteB0 (psxRegs.CP2D.p[20].b.h2)
#define gteCODE0 (psxRegs.CP2D.p[20].b.h3)
#define gteRGB1 (psxRegs.CP2D.r[21])
#define gteR1 (psxRegs.CP2D.p[21].b.l)
#define gteG1 (psxRegs.CP2D.p[21].b.h)
#define gteB1 (psxRegs.CP2D.p[21].b.h2)
#define gteCODE1 (psxRegs.CP2D.p[21].b.h3)
#define gteRGB2 (psxRegs.CP2D.r[22])
#define gteR2 (psxRegs.CP2D.p[22].b.l)
#define gteG2 (psxRegs.CP2D.p[22].b.h)
#define gteB2 (psxRegs.CP2D.p[22].b.h2)
#define gteCODE2 (psxRegs.CP2D.p[22].b.h3)
#define gteRES1 (psxRegs.CP2D.r[23])
#define gteMAC0 (((s32 *)psxRegs.CP2D.r)[24])
#define gteMAC1 (((s32 *)psxRegs.CP2D.r)[25])
#define gteMAC2 (((s32 *)psxRegs.CP2D.r)[26])
#define gteMAC3 (((s32 *)psxRegs.CP2D.r)[27])
#define gteIRGB (psxRegs.CP2D.r[28])
#define gteORGB (psxRegs.CP2D.r[29])
#define gteLZCS (psxRegs.CP2D.r[30])
#define gteLZCR (psxRegs.CP2D.r[31])
#define gteR11R12 (((s32 *)psxRegs.CP2C.r)[0])
#define gteR22R23 (((s32 *)psxRegs.CP2C.r)[2])
#define gteR11 (psxRegs.CP2C.p[0].sw.l)
#define gteR12 (psxRegs.CP2C.p[0].sw.h)
#define gteR13 (psxRegs.CP2C.p[1].sw.l)
#define gteR21 (psxRegs.CP2C.p[1].sw.h)
#define gteR22 (psxRegs.CP2C.p[2].sw.l)
#define gteR23 (psxRegs.CP2C.p[2].sw.h)
#define gteR31 (psxRegs.CP2C.p[3].sw.l)
#define gteR32 (psxRegs.CP2C.p[3].sw.h)
#define gteR33 (psxRegs.CP2C.p[4].sw.l)
#define gteTRX (((s32 *)psxRegs.CP2C.r)[5])
#define gteTRY (((s32 *)psxRegs.CP2C.r)[6])
#define gteTRZ (((s32 *)psxRegs.CP2C.r)[7])
#define gteL11 (psxRegs.CP2C.p[8].sw.l)
#define gteL12 (psxRegs.CP2C.p[8].sw.h)
#define gteL13 (psxRegs.CP2C.p[9].sw.l)
#define gteL21 (psxRegs.CP2C.p[9].sw.h)
#define gteL22 (psxRegs.CP2C.p[10].sw.l)
#define gteL23 (psxRegs.CP2C.p[10].sw.h)
#define gteL31 (psxRegs.CP2C.p[11].sw.l)
#define gteL32 (psxRegs.CP2C.p[11].sw.h)
#define gteL33 (psxRegs.CP2C.p[12].sw.l)
#define gteRBK (((s32 *)psxRegs.CP2C.r)[13])
#define gteGBK (((s32 *)psxRegs.CP2C.r)[14])
#define gteBBK (((s32 *)psxRegs.CP2C.r)[15])
#define gteLR1 (psxRegs.CP2C.p[16].sw.l)
#define gteLR2 (psxRegs.CP2C.p[16].sw.h)
#define gteLR3 (psxRegs.CP2C.p[17].sw.l)
#define gteLG1 (psxRegs.CP2C.p[17].sw.h)
#define gteLG2 (psxRegs.CP2C.p[18].sw.l)
#define gteLG3 (psxRegs.CP2C.p[18].sw.h)
#define gteLB1 (psxRegs.CP2C.p[19].sw.l)
#define gteLB2 (psxRegs.CP2C.p[19].sw.h)
#define gteLB3 (psxRegs.CP2C.p[20].sw.l)
#define gteRFC (((s32 *)psxRegs.CP2C.r)[21])
#define gteGFC (((s32 *)psxRegs.CP2C.r)[22])
#define gteBFC (((s32 *)psxRegs.CP2C.r)[23])
#define gteOFX (((s32 *)psxRegs.CP2C.r)[24])
#define gteOFY (((s32 *)psxRegs.CP2C.r)[25])
#define gteH (psxRegs.CP2C.p[26].sw.l)
#define gteDQA (psxRegs.CP2C.p[27].sw.l)
#define gteDQB (((s32 *)psxRegs.CP2C.r)[28])
#define gteZSF3 (psxRegs.CP2C.p[29].sw.l)
#define gteZSF4 (psxRegs.CP2C.p[30].sw.l)
#define gteFLAG (psxRegs.CP2C.r[31])
#define GTE_OP(op) ((op >> 20) & 31)
#define GTE_SF(op) ((op >> 19) & 1)
#define GTE_MX(op) ((op >> 17) & 3)
#define GTE_V(op) ((op >> 15) & 3)
#define GTE_CV(op) ((op >> 13) & 3)
#define GTE_CD(op) ((op >> 11) & 3) /* not used */
#define GTE_LM(op) ((op >> 10) & 1)
#define GTE_CT(op) ((op >> 6) & 15) /* not used */
#define GTE_FUNCT(op) (op & 63)
#define INS_COFUN(op) (op & 0x1ffffff)
#define gteop (INS_COFUN(psxRegs.code))
static inline s64 BOUNDS(s64 n_value, s64 n_max, int n_maxflag, s64 n_min, int n_minflag) {
if (n_value > n_max) {
gteFLAG |= n_maxflag;
} else if (n_value < n_min) {
gteFLAG |= n_minflag;
}
return n_value;
}
static inline s32 LIM(s32 value, s32 max, s32 min, u32 flag) {
s32 ret = value;
if (value > max) {
gteFLAG |= flag;
ret = max;
} else if (value < min) {
gteFLAG |= flag;
ret = min;
}
return ret;
}
#define A1(a) BOUNDS((a), 0x7fffffff, (1 << 30), -(s64)0x80000000, (1 << 31) | (1 << 27))
#define A2(a) BOUNDS((a), 0x7fffffff, (1 << 29), -(s64)0x80000000, (1 << 31) | (1 << 26))
#define A3(a) BOUNDS((a), 0x7fffffff, (1 << 28), -(s64)0x80000000, (1 << 31) | (1 << 25))
#define limB1(a, l) LIM((a), 0x7fff, -0x8000 * !l, (1 << 31) | (1 << 24))
#define limB2(a, l) LIM((a), 0x7fff, -0x8000 * !l, (1 << 31) | (1 << 23))
#define limB3(a, l) LIM((a), 0x7fff, -0x8000 * !l, (1 << 22))
#define limC1(a) LIM((a), 0x00ff, 0x0000, (1 << 21))
#define limC2(a) LIM((a), 0x00ff, 0x0000, (1 << 20))
#define limC3(a) LIM((a), 0x00ff, 0x0000, (1 << 19))
#define limD(a) LIM((a), 0xffff, 0x0000, (1 << 31) | (1 << 18))
static inline u32 limE(u32 result) {
if (result > 0x1ffff) {
gteFLAG |= (1 << 31) | (1 << 17);
return 0x1ffff;
}
return result;
}
#define F(a) BOUNDS((a), 0x7fffffff, (1 << 31) | (1 << 16), -(s64)0x80000000, (1 << 31) | (1 << 15))
#define limG1(a) LIM((a), 0x3ff, -0x400, (1 << 31) | (1 << 14))
#define limG2(a) LIM((a), 0x3ff, -0x400, (1 << 31) | (1 << 13))
#define limH(a) LIM((a), 0xfff, 0x000, (1 << 12))
static inline u32 MFC2(int reg) {
switch (reg) {
case 1:
case 3:
case 5:
case 8:
case 9:
case 10:
case 11:
psxRegs.CP2D.r[reg] = (s32)psxRegs.CP2D.p[reg].sw.l;
break;
case 7:
case 16:
case 17:
case 18:
case 19:
psxRegs.CP2D.r[reg] = (u32)psxRegs.CP2D.p[reg].w.l;
break;
case 15:
psxRegs.CP2D.r[reg] = gteSXY2;
break;
case 28:
case 30:
return 0;
case 29:
psxRegs.CP2D.r[reg] = LIM(gteIR1 >> 7, 0x1f, 0, 0) |
(LIM(gteIR2 >> 7, 0x1f, 0, 0) << 5) |
(LIM(gteIR3 >> 7, 0x1f, 0, 0) << 10);
break;
}
return psxRegs.CP2D.r[reg];
}
static inline void MTC2(u32 value, int reg) {
switch (reg) {
case 15:
gteSXY0 = gteSXY1;
gteSXY1 = gteSXY2;
gteSXY2 = value;
gteSXYP = value;
break;
case 28:
gteIRGB = value;
gteIR1 = (value & 0x1f) << 7;
gteIR2 = (value & 0x3e0) << 2;
gteIR3 = (value & 0x7c00) >> 3;
break;
case 30:
{
int a;
gteLZCS = value;
a = gteLZCS;
if (a > 0) {
int i;
for (i = 31; (a & (1 << i)) == 0 && i >= 0; i--);
gteLZCR = 31 - i;
} else if (a < 0) {
int i;
a ^= 0xffffffff;
for (i = 31; (a & (1 << i)) == 0 && i >= 0; i--);
gteLZCR = 31 - i;
} else {
gteLZCR = 32;
}
}
break;
case 7:
case 29:
case 31:
return;
default:
psxRegs.CP2D.r[reg] = value;
}
}
static inline void CTC2(u32 value, int reg) {
switch (reg) {
case 4:
case 12:
case 20:
case 26:
case 27:
case 29:
case 30:
value = (s32)(s16)value;
break;
case 31:
value = value & 0x7ffff000;
if ((value & 0x7f87e000) != 0) {
value |= 0x80000000;
}
break;
}
psxRegs.CP2C.r[reg] = value;
}
void gteMFC2() {
if (!_Rt_) return;
psxRegs.GPR.r[_Rt_] = MFC2(_Rd_);
}
void gteCFC2() {
if (!_Rt_) return;
psxRegs.GPR.r[_Rt_] = psxRegs.CP2C.r[_Rd_];
}
void gteMTC2() {
MTC2(psxRegs.GPR.r[_Rt_], _Rd_);
}
void gteCTC2() {
CTC2(psxRegs.GPR.r[_Rt_], _Rd_);
}
#define _oB_ (psxRegs.GPR.r[_Rs_] + _Imm_)
void gteLWC2() {
MTC2(psxMemRead32(_oB_), _Rt_);
}
void gteSWC2() {
psxMemWrite32(_oB_, MFC2(_Rt_));
}
void gteRTPS() {
int h_over_sz3;
#ifdef GTE_LOG
GTE_LOG("RTPS\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)gteTRX << 12) + (gteR11 * gteVX0) + (gteR12 * gteVY0) + (gteR13 * gteVZ0)) >> 12);
gteMAC2 = A2((((s64)gteTRY << 12) + (gteR21 * gteVX0) + (gteR22 * gteVY0) + (gteR23 * gteVZ0)) >> 12);
gteMAC3 = A3((((s64)gteTRZ << 12) + (gteR31 * gteVX0) + (gteR32 * gteVY0) + (gteR33 * gteVZ0)) >> 12);
gteIR1 = limB1(gteMAC1, 0);
gteIR2 = limB2(gteMAC2, 0);
gteIR3 = limB3(gteMAC3, 0);
gteSZ0 = gteSZ1;
gteSZ1 = gteSZ2;
gteSZ2 = gteSZ3;
gteSZ3 = limD(gteMAC3);
h_over_sz3 = limE((gteH * 65536) / (gteSZ3 + 0.5));
gteSXY0 = gteSXY1;
gteSXY1 = gteSXY2;
gteSX2 = limG1(F((s64)gteOFX + ((s64)gteIR1 * h_over_sz3)) >> 16);
gteSY2 = limG2(F((s64)gteOFY + ((s64)gteIR2 * h_over_sz3)) >> 16);
gteMAC0 = F((s64)(gteDQB + ((s64)gteDQA * h_over_sz3)) >> 12);
gteIR0 = limH(gteMAC0);
}
void gteRTPT() {
int h_over_sz3;
int v;
s32 vx, vy, vz;
#ifdef GTE_LOG
GTE_LOG("RTPT\n");
#endif
gteFLAG = 0;
gteSZ0 = gteSZ3;
for (v = 0; v < 3; v++) {
vx = VX(v);
vy = VY(v);
vz = VZ(v);
gteMAC1 = A1((((s64)gteTRX << 12) + (gteR11 * vx) + (gteR12 * vy) + (gteR13 * vz)) >> 12);
gteMAC2 = A2((((s64)gteTRY << 12) + (gteR21 * vx) + (gteR22 * vy) + (gteR23 * vz)) >> 12);
gteMAC3 = A3((((s64)gteTRZ << 12) + (gteR31 * vx) + (gteR32 * vy) + (gteR33 * vz)) >> 12);
gteIR1 = limB1(gteMAC1, 0);
gteIR2 = limB2(gteMAC2, 0);
gteIR3 = limB3(gteMAC3, 0);
fSZ(v) = limD(gteMAC3);
h_over_sz3 = limE((gteH * 65536) / (fSZ(v) + 0.5));
fSX(v) = limG1(F((s64)gteOFX + ((s64)gteIR1 * h_over_sz3)) >> 16);
fSY(v) = limG2(F((s64)gteOFY + ((s64)gteIR2 * h_over_sz3)) >> 16);
}
gteMAC0 = F((s64)(gteDQB + ((s64)gteDQA * h_over_sz3)) >> 12);
gteIR0 = limH(gteMAC0);
}
void gteMVMVA() {
int shift = 12 * GTE_SF(gteop);
int mx = GTE_MX(gteop);
int v = GTE_V(gteop);
int cv = GTE_CV(gteop);
int lm = GTE_LM(gteop);
s32 vx = VX(v);
s32 vy = VY(v);
s32 vz = VZ(v);
#ifdef GTE_LOG
GTE_LOG("MVMVA\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)CV1(cv) << 12) + (MX11(mx) * vx) + (MX12(mx) * vy) + (MX13(mx) * vz)) >> shift);
gteMAC2 = A2((((s64)CV2(cv) << 12) + (MX21(mx) * vx) + (MX22(mx) * vy) + (MX23(mx) * vz)) >> shift);
gteMAC3 = A3((((s64)CV3(cv) << 12) + (MX31(mx) * vx) + (MX32(mx) * vy) + (MX33(mx) * vz)) >> shift);
gteIR1 = limB1(gteMAC1, lm);
gteIR2 = limB2(gteMAC2, lm);
gteIR3 = limB3(gteMAC3, lm);
}
void gteNCLIP() {
#ifdef GTE_LOG
GTE_LOG("NCLIP\n");
#endif
gteFLAG = 0;
gteMAC0 = F((s64)gteSX0 * (gteSY1 - gteSY2) +
gteSX1 * (gteSY2 - gteSY0) +
gteSX2 * (gteSY0 - gteSY1));
}
void gteAVSZ3() {
#ifdef GTE_LOG
GTE_LOG("AVSZ3\n");
#endif
gteFLAG = 0;
gteMAC0 = F((s64)(gteZSF3 * gteSZ1) + (gteZSF3 * gteSZ2) + (gteZSF3 * gteSZ3));
gteOTZ = limD(gteMAC0 >> 12);
}
void gteAVSZ4() {
#ifdef GTE_LOG
GTE_LOG("AVSZ4\n");
#endif
gteFLAG = 0;
gteMAC0 = F((s64)(gteZSF4 * (gteSZ0 + gteSZ1 + gteSZ2 + gteSZ3)));
gteOTZ = limD(gteMAC0 >> 12);
}
void gteSQR() {
int shift = 12 * GTE_SF(gteop);
int lm = GTE_LM(gteop);
#ifdef GTE_LOG
GTE_LOG("SQR\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((gteIR1 * gteIR1) >> shift);
gteMAC2 = A2((gteIR2 * gteIR2) >> shift);
gteMAC3 = A3((gteIR3 * gteIR3) >> shift);
gteIR1 = limB1(gteMAC1 >> shift, lm);
gteIR2 = limB2(gteMAC2 >> shift, lm);
gteIR3 = limB3(gteMAC3 >> shift, lm);
}
void gteNCCS() {
#ifdef GTE_LOG
GTE_LOG("NCCS\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)gteL11 * gteVX0) + (gteL12 * gteVY0) + (gteL13 * gteVZ0)) >> 12);
gteMAC2 = A2((((s64)gteL21 * gteVX0) + (gteL22 * gteVY0) + (gteL23 * gteVZ0)) >> 12);
gteMAC3 = A3((((s64)gteL31 * gteVX0) + (gteL32 * gteVY0) + (gteL33 * gteVZ0)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1(((s64)gteR * gteIR1) >> 8);
gteMAC2 = A2(((s64)gteG * gteIR2) >> 8);
gteMAC3 = A3(((s64)gteB * gteIR3) >> 8);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteNCCT() {
int v;
s32 vx, vy, vz;
#ifdef GTE_LOG
GTE_LOG("NCCT\n");
#endif
gteFLAG = 0;
for (v = 0; v < 3; v++) {
vx = VX(v);
vy = VY(v);
vz = VZ(v);
gteMAC1 = A1((((s64)gteL11 * vx) + (gteL12 * vy) + (gteL13 * vz)) >> 12);
gteMAC2 = A2((((s64)gteL21 * vx) + (gteL22 * vy) + (gteL23 * vz)) >> 12);
gteMAC3 = A3((((s64)gteL31 * vx) + (gteL32 * vy) + (gteL33 * vz)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1(((s64)gteR * gteIR1) >> 8);
gteMAC2 = A2(((s64)gteG * gteIR2) >> 8);
gteMAC3 = A3(((s64)gteB * gteIR3) >> 8);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
}
void gteNCDS() {
#ifdef GTE_LOG
GTE_LOG("NCDS\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)gteL11 * gteVX0) + (gteL12 * gteVY0) + (gteL13 * gteVZ0)) >> 12);
gteMAC2 = A2((((s64)gteL21 * gteVX0) + (gteL22 * gteVY0) + (gteL23 * gteVZ0)) >> 12);
gteMAC3 = A3((((s64)gteL31 * gteVX0) + (gteL32 * gteVY0) + (gteL33 * gteVZ0)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1(((((s64)gteR << 4) * gteIR1) + (gteIR0 * limB1(gteRFC - ((gteR * gteIR1) >> 8), 0))) >> 12);
gteMAC2 = A2(((((s64)gteG << 4) * gteIR2) + (gteIR0 * limB2(gteGFC - ((gteG * gteIR2) >> 8), 0))) >> 12);
gteMAC3 = A3(((((s64)gteB << 4) * gteIR3) + (gteIR0 * limB3(gteBFC - ((gteB * gteIR3) >> 8), 0))) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteNCDT() {
int v;
s32 vx, vy, vz;
#ifdef GTE_LOG
GTE_LOG("NCDT\n");
#endif
gteFLAG = 0;
for (v = 0; v < 3; v++) {
vx = VX(v);
vy = VY(v);
vz = VZ(v);
gteMAC1 = A1((((s64)gteL11 * vx) + (gteL12 * vy) + (gteL13 * vz)) >> 12);
gteMAC2 = A2((((s64)gteL21 * vx) + (gteL22 * vy) + (gteL23 * vz)) >> 12);
gteMAC3 = A3((((s64)gteL31 * vx) + (gteL32 * vy) + (gteL33 * vz)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1(((((s64)gteR << 4) * gteIR1) + (gteIR0 * limB1(gteRFC - ((gteR * gteIR1) >> 8), 0))) >> 12);
gteMAC2 = A2(((((s64)gteG << 4) * gteIR2) + (gteIR0 * limB2(gteGFC - ((gteG * gteIR2) >> 8), 0))) >> 12);
gteMAC3 = A3(((((s64)gteB << 4) * gteIR3) + (gteIR0 * limB3(gteBFC - ((gteB * gteIR3) >> 8), 0))) >> 12);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
}
void gteOP() {
int shift = 12 * GTE_SF(gteop);
int lm = GTE_LM(gteop);
#ifdef GTE_LOG
GTE_LOG("OP\n");
#endif
gteFLAG = 0;
gteMAC1 = A1(((s64)(gteR22 * gteIR3) - (gteR33 * gteIR2)) >> shift);
gteMAC2 = A2(((s64)(gteR33 * gteIR1) - (gteR11 * gteIR3)) >> shift);
gteMAC3 = A3(((s64)(gteR11 * gteIR2) - (gteR22 * gteIR1)) >> shift);
gteIR1 = limB1(gteMAC1, lm);
gteIR2 = limB2(gteMAC2, lm);
gteIR3 = limB3(gteMAC3, lm);
}
void gteDCPL() {
int lm = GTE_LM(gteop);
s64 RIR1 = ((s64)gteR * gteIR1) >> 8;
s64 GIR2 = ((s64)gteG * gteIR2) >> 8;
s64 BIR3 = ((s64)gteB * gteIR3) >> 8;
#ifdef GTE_LOG
GTE_LOG("DCPL\n");
#endif
gteFLAG = 0;
gteMAC1 = A1(RIR1 + ((gteIR0 * limB1(gteRFC - RIR1, 0)) >> 12));
gteMAC2 = A2(GIR2 + ((gteIR0 * limB1(gteGFC - GIR2, 0)) >> 12));
gteMAC3 = A3(BIR3 + ((gteIR0 * limB1(gteBFC - BIR3, 0)) >> 12));
gteIR1 = limB1(gteMAC1, lm);
gteIR2 = limB2(gteMAC2, lm);
gteIR3 = limB3(gteMAC3, lm);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteGPF() {
int shift = 12 * GTE_SF(gteop);
#ifdef GTE_LOG
GTE_LOG("GPF\n");
#endif
gteFLAG = 0;
gteMAC1 = A1(((s64)gteIR0 * gteIR1) >> shift);
gteMAC2 = A2(((s64)gteIR0 * gteIR2) >> shift);
gteMAC3 = A3(((s64)gteIR0 * gteIR3) >> shift);
gteIR1 = limB1(gteMAC1, 0);
gteIR2 = limB2(gteMAC2, 0);
gteIR3 = limB3(gteMAC3, 0);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteGPL() {
int shift = 12 * GTE_SF(gteop);
#ifdef GTE_LOG
GTE_LOG("GPL\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)gteMAC1 << shift) + (gteIR0 * gteIR1)) >> shift);
gteMAC2 = A2((((s64)gteMAC2 << shift) + (gteIR0 * gteIR2)) >> shift);
gteMAC3 = A3((((s64)gteMAC3 << shift) + (gteIR0 * gteIR3)) >> shift);
gteIR1 = limB1(gteMAC1, 0);
gteIR2 = limB2(gteMAC2, 0);
gteIR3 = limB3(gteMAC3, 0);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteDPCS() {
int shift = 12 * GTE_SF(gteop);
#ifdef GTE_LOG
GTE_LOG("DPCS\n");
#endif
gteFLAG = 0;
gteMAC1 = A1(((gteR << 16) + (gteIR0 * limB1(A1((s64)gteRFC - (gteR << 4)) << (12 - shift), 0))) >> 12);
gteMAC2 = A2(((gteG << 16) + (gteIR0 * limB2(A2((s64)gteGFC - (gteG << 4)) << (12 - shift), 0))) >> 12);
gteMAC3 = A3(((gteB << 16) + (gteIR0 * limB3(A3((s64)gteBFC - (gteB << 4)) << (12 - shift), 0))) >> 12);
gteIR1 = limB1(gteMAC1, 0);
gteIR2 = limB2(gteMAC2, 0);
gteIR3 = limB3(gteMAC3, 0);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteDPCT() {
int v;
#ifdef GTE_LOG
GTE_LOG("DPCT\n");
#endif
gteFLAG = 0;
for (v = 0; v < 3; v++) {
gteMAC1 = A1((((s64)gteR0 << 16) + ((s64)gteIR0 * (limB1(gteRFC - (gteR0 << 4), 0)))) >> 12);
gteMAC2 = A2((((s64)gteG0 << 16) + ((s64)gteIR0 * (limB1(gteGFC - (gteG0 << 4), 0)))) >> 12);
gteMAC3 = A3((((s64)gteB0 << 16) + ((s64)gteIR0 * (limB1(gteBFC - (gteB0 << 4), 0)))) >> 12);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
gteIR1 = limB1(gteMAC1, 0);
gteIR2 = limB2(gteMAC2, 0);
gteIR3 = limB3(gteMAC3, 0);
}
void gteNCS() {
#ifdef GTE_LOG
GTE_LOG("NCS\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)gteL11 * gteVX0) + (gteL12 * gteVY0) + (gteL13 * gteVZ0)) >> 12);
gteMAC2 = A2((((s64)gteL21 * gteVX0) + (gteL22 * gteVY0) + (gteL23 * gteVZ0)) >> 12);
gteMAC3 = A3((((s64)gteL31 * gteVX0) + (gteL32 * gteVY0) + (gteL33 * gteVZ0)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteNCT() {
int v;
s32 vx, vy, vz;
#ifdef GTE_LOG
GTE_LOG("NCT\n");
#endif
gteFLAG = 0;
for (v = 0; v < 3; v++) {
vx = VX(v);
vy = VY(v);
vz = VZ(v);
gteMAC1 = A1((((s64)gteL11 * vx) + (gteL12 * vy) + (gteL13 * vz)) >> 12);
gteMAC2 = A2((((s64)gteL21 * vx) + (gteL22 * vy) + (gteL23 * vz)) >> 12);
gteMAC3 = A3((((s64)gteL31 * vx) + (gteL32 * vy) + (gteL33 * vz)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
}
void gteCC() {
#ifdef GTE_LOG
GTE_LOG("CC\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1(((s64)gteR * gteIR1) >> 8);
gteMAC2 = A2(((s64)gteG * gteIR2) >> 8);
gteMAC3 = A3(((s64)gteB * gteIR3) >> 8);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteINTPL() {
int shift = 12 * GTE_SF(gteop);
int lm = GTE_LM(gteop);
#ifdef GTE_LOG
GTE_LOG("INTPL\n");
#endif
gteFLAG = 0;
gteMAC1 = A1(((gteIR1 << 12) + (gteIR0 * limB1(((s64)gteRFC - gteIR1), 0))) >> shift);
gteMAC2 = A2(((gteIR2 << 12) + (gteIR0 * limB2(((s64)gteGFC - gteIR2), 0))) >> shift);
gteMAC3 = A3(((gteIR3 << 12) + (gteIR0 * limB3(((s64)gteBFC - gteIR3), 0))) >> shift);
gteIR1 = limB1(gteMAC1, lm);
gteIR2 = limB2(gteMAC2, lm);
gteIR3 = limB3(gteMAC3, lm);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}
void gteCDP() {
#ifdef GTE_LOG
GTE_LOG("CDP\n");
#endif
gteFLAG = 0;
gteMAC1 = A1((((s64)gteRBK << 12) + (gteLR1 * gteIR1) + (gteLR2 * gteIR2) + (gteLR3 * gteIR3)) >> 12);
gteMAC2 = A2((((s64)gteGBK << 12) + (gteLG1 * gteIR1) + (gteLG2 * gteIR2) + (gteLG3 * gteIR3)) >> 12);
gteMAC3 = A3((((s64)gteBBK << 12) + (gteLB1 * gteIR1) + (gteLB2 * gteIR2) + (gteLB3 * gteIR3)) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteMAC1 = A1(((((s64)gteR << 4) * gteIR1) + (gteIR0 * limB1(gteRFC - ((gteR * gteIR1) >> 8), 0))) >> 12);
gteMAC2 = A2(((((s64)gteG << 4) * gteIR2) + (gteIR0 * limB2(gteGFC - ((gteG * gteIR2) >> 8), 0))) >> 12);
gteMAC3 = A3(((((s64)gteB << 4) * gteIR3) + (gteIR0 * limB3(gteBFC - ((gteB * gteIR3) >> 8), 0))) >> 12);
gteIR1 = limB1(gteMAC1, 1);
gteIR2 = limB2(gteMAC2, 1);
gteIR3 = limB3(gteMAC3, 1);
gteRGB0 = gteRGB1;
gteRGB1 = gteRGB2;
gteCODE2 = gteCODE;
gteR2 = limC1(gteMAC1 >> 4);
gteG2 = limC2(gteMAC2 >> 4);
gteB2 = limC3(gteMAC3 >> 4);
}